注:本文是人工智能研究网的学习笔记

计算机生成的数据集

用于分类任务和聚类任务,这些函数产生样本特征向量矩阵以及对应的类别标签集合。

数据集 简介
make_blobs 多类单标签数据集,为每个类分配一个或者多个正态分布的点集,提供了控制每个数据点的参数:中心点(均值),标准差,常用于聚类算法。
make_classification 多类单标签数据集,为每个类分配了一个或者多个正态分布的点集。提供了为数据集添加噪声的方式,包括维度相性,无效特征和冗余特征等。
make_gaussian_quantiles 将一个单高斯分布的点集活粉为两个数量均等的点集,作为两类。
make_hastie_10_2 产生一个相似的二元分类器数据集,有10个维度。
make_circles/make_moons 产生二维分类数据集来测试某些算法(e.g.centroid-based clustering或linear classfication)的性能。可以为数据集添加噪声,可以为二元分类器产生一些球形判决表面的数据。

用于多标签分类任务

数据集 简介
make_multilabel_classification 产生多类多标签随机样本,这些样本模拟了从很多话题的混合分布中抽取的词袋模型,每个文档的话题数量符合泊松分布,话题本身则从一个固定的随机分布中抽取出来,同样的,单词数量也是泊松分布抽取,句子则是从多项式抽取。

用于回归任务的

数据集 简介
make_regression 产生回归任务的数据集,期望目标输出是随机特征的稀疏随机线性组合,并且附带有噪声,它的有用的特征可能是不相关的,或者低秩的(引起目标值的变动的只有少量的集合特征)
make_sparse_uncorrelated 产生四个特征的线性组合(固定参数)作为期望目标输出
make_friedman1 采用了多项式和正弦变换
make_friedman2 包含了特征的乘积和互换操作
make_friedman3 类似于arctan变换

用于流行学习的

数据集 简介
make_s_curve 生成S型曲线数据集
make_swiss_roll 生成瑞士卷曲线数据集

用于因子分解的

数据集 简介
make_low_rank_matrix
make_sparse_coded_signal
nake_spd_matrix 产生的是随机的堆成的正定矩阵
make_sparse_spd_matrix 产生的是稀疏的堆成正定矩阵

make_blobs()

make_classification()

make_moons()

make_circles()

svmlight/libsvm格式的数据集

svmlight/libsvm的每一行样本的存放格式

<label> <feature-id>:<feature-value> <feature-id>:<feature-value>...

使用下面的方式导入该格式的数据集

X_train, y_train = sklearn.datasets.load_svmlight_file('train.txt')

还可以使用下面的方式将训练集和测试集一起导入,可以保证X_train和X_test有同样数目的特征

X_train, y_train, X_test, y_test = sklearn.datasets.load_svmlight_file(('train.txt', 'test.txt'))

SKLearn数据集API(二)的更多相关文章

  1. SKLearn数据集API(一)

    注:本文是人工智能研究网的学习笔记 数据集一览 类型 获取方式 自带的小数据集 sklearn.datasets.load_ 在线下载的数据集 sklearn.datasets.fetch_ 计算机生 ...

  2. 【学习笔记】sklearn数据集与估计器

    数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 2 ...

  3. 机器学习笔记(四)--sklearn数据集

    sklearn数据集 (一)机器学习的一般数据集会划分为两个部分 训练数据:用于训练,构建模型. 测试数据:在模型检验时使用,用于评估模型是否有效. 划分数据的API:sklearn.model_se ...

  4. sklearn——数据集调用及应用

    忙了许久,总算是又想起这边还没写完呢. 那今天就写写sklearn库的一部分简单内容吧,包括数据集调用,聚类,轮廓系数等等.   自带数据集API 数据集函数 中文翻译 任务类型 数据规模 load_ ...

  5. Sklearn数据集与机器学习

    sklearn数据集与机器学习组成 机器学习组成:模型.策略.优化 <统计机器学习>中指出:机器学习=模型+策略+算法.其实机器学习可以表示为:Learning= Representati ...

  6. sklearn数据集

    数据集划分: 机器学习一般的数据集会划分为两个部分 训练数据: 用于训练,构建模型 测试数据: 在模型检验时使用,用于评估模型是否有效 sklearn数据集划分API: 代码示例文末! scikit- ...

  7. Civil 3D API二次开发学习指南

    Civil 3D构建于AutoCAD 和 Map 3D之上,在学习Civil 3D API二次开发之前,您至少需要了解AutoCAD API的二次开发,你可以参考AutoCAD .NET API二次开 ...

  8. 用JSON-server模拟REST API(二) 动态数据

    用JSON-server模拟REST API(二) 动态数据 上一篇演示了如何安装并运行 json server , 在这里将使用第三方库让模拟的数据更加丰满和实用. 目录: 使用动态数据 为什么选择 ...

  9. Express4.x API (二):Request (译)

    写在前面 最近学习express想要系统的过一遍API,www.expressjs.com是express英文官网(进入www.epxressjs.com.cn发现也是只有前几句话是中文呀~~),所以 ...

随机推荐

  1. 在Django中Session的那点事!

    1.session是什么 首先引入度娘的解释:Session:在计算机中,尤其是在网络应用中,称为“会话控制”.Session 对象存储特定用户会话所需的属性及配置信息.这样,当用户在应用程序的 We ...

  2. poj1063

    题意:有一些珠子排成一圈,珠子有两种颜色:黑和白.每次操作可以调换中间隔着一个珠子的两珠子的位置,给出这个圈子的初始状态,问最终能否通过操作让圈子中所有同色的珠子排在一起,即黑白分开. 分析:分两种情 ...

  3. Go 的package

    一.包的一些基本的概念 1.在同一个目录下的所有go文件中,只能有一个main函数.如果存在多个main函数,则在编译的时候会报错 那么,在同一个目录下的两个go文件究竟是什么关系? 为什么会彼此影响 ...

  4. 安装pywin32模块

    1.先下载pywin32对于的版本 下载地址:python for windows extensions 2.选择自己对应的版本,我的是python3.5版本 注意注意注意:此处一定要看清楚自己的py ...

  5. Fiddler 4 抓包(APP HTTPS )

    一.手机连接Fiddler 1.配置fiddler 1.安装fiddler,基本下一步下一步即可: 2.打开fiddler,点击顶部栏Tools——>Options 3.在HTTPS页签勾选“D ...

  6. java 内部类可以被覆盖吗

    如果创建了一个内部类,然后继承其外围类并重新定义内部类时,"覆盖"内部类就好像是其外围类的一个方法,并不起作用, 这两个内部类是完全独立的两个实体,各自在自己的命名空间内 //: ...

  7. ZooKeeper的典型应用场景

    <从Paxos到Zookeeper 分布式一致性原理与实践>读书笔记 本文:总结脑图地址:脑图 前言 所有的典型应用场景,都是利用了ZK的如下特性: 强一致性:在高并发情况下,能够保证节点 ...

  8. 批处理命令篇--配置免安装mysql

    免安装版的mysql是进行软件绿色发布的绝佳助手,本文介绍一种使用批处理命令自动配置mysql的方法. (1)建立三个文件,分别是:service install.bat,temp.txt,updat ...

  9. Spark(八)JVM调优以及GC垃圾收集器

    一JVM结构 1 Java内存结构 JVM内存结构主要有三大块:堆内存.方法区和栈. 堆内存是JVM中最大的一块由年轻代和老年代组成,而年轻代内存又被分成三部分,Eden空间.From Survivo ...

  10. Redis(四)Redis高级

    一Redis 数据备份与恢复 Redis SAVE 命令用于创建当前数据库的备份. 语法 redis Save 命令基本语法如下: redis 127.0.0.1:6379> SAVE 实例 r ...