NoSQL 之Redis的5大数据类型
NoSQL 之Redis的5大数据类型
Redis的五大数据类型也称五大数据对象;了解过6大数据结构,Redis并没有直接使用这些结构来实现键值对数据库,而是使用这些结构构建了一个对象系统redisObject;
这个对象系统包含了五大数据对象:字符串对象(string)、列表对象(list)、哈希对象(hash)、集合(set)对象和有序集合对象(zset);
而这五大对象的底层数据编码可以用命令OBJECT ENCODING来进行查看。
---------------------- String数据类型 ----------------------------------------
概述:String是redis最基本的类型,最大能存储512MB的数据,String类型是二进制安全的,即可以存储任何数据、比如数字、图片、序列化对象等
1. SET/GET/APPEND/STRLEN:
redis 127.0.0.1:6379> exists mykey #判断该键是否存在,存在返回1,否则返回0。
(integer) 0
redis 127.0.0.1:6379> append mykey "hello" #该键并不存在,因此append命令返回当前Value的长度。
(integer) 5
redis 127.0.0.1:6379> append mykey " world" #该键已经存在,因此返回追加后Value的长度。
(integer) 11
redis 127.0.0.1:6379> get mykey #通过get命令获取该键,以判断append的结果。
"hello world"
redis 127.0.0.1:6379> set mykey "this is a test" #通过set命令为键设置新值,并覆盖原有值。
OK
redis 127.0.0.1:6379> get mykey
"this is a test"
redis 127.0.0.1:6379> strlen mykey #获取指定Key的字符长度。
(integer) 14
redis 127.0.0.1:6379> set mykey 20 #设置Key的值为20
OK
redis 127.0.0.1:6379> incr mykey #该Key的值递增1
(integer) 21
redis 127.0.0.1:6379> decr mykey #该Key的值递减1
(integer) 20
redis 127.0.0.1:6379> del mykey #删除已有键。
(integer) 1
redis 127.0.0.1:6379> decr mykey #对空值执行递减操作,其原值被设定为0,递减后的值为-1
(integer) -1
redis 127.0.0.1:6379> del mykey
(integer) 1
redis 127.0.0.1:6379> incr mykey #对空值执行递增操作,其原值被设定为0,递增后的值为1
(integer) 1
redis 127.0.0.1:6379> set mykey hello #将该键的Value设置为不能转换为整型的普通字符串。
OK
redis 127.0.0.1:6379> incr mykey
(error) ERR value is not an integer or out of range
redis 127.0.0.1:6379> set mykey 10
OK
redis 127.0.0.1:6379> decrby mykey 5 #减少指定的整数
(integer) 5
redis 127.0.0.1:6379> incrby mykey 10 #增加指定的整数
(integer) 15
redis 127.0.0.1:6379> incr mycounter #将计数器的值原子性的递增1
(integer) 1
"1"
redis 127.0.0.1:6379> get mycounter #查看设置后的结果。
"0"
redis 127.0.0.1:6379> setex mykey 15 "hello" #设置指定Key的过期时间为10秒。
OK
redis 127.0.0.1:6379> ttl mykey #通过ttl命令查看一下指定Key的剩余存活时间(秒数),-2表示已经过期,-1表示永不过期。
(integer) 4
redis 127.0.0.1:6379> get mykey #在该键的存活期内我们仍然可以获取到它的Value。
"hello"
redis 127.0.0.1:6379> ttl mykey #该ttl命令的返回值显示,该Key已经过期。
(integer) -2
redis 127.0.0.1:6379> get mykey #获取已过期的Key将返回nil。
(nil)
redis 127.0.0.1:6379> del mykey #删除该键,以便于下面的测试验证。
(integer) 1
redis 127.0.0.1:6379> setnx mykey "hello" #该键并不存在,因此setnx命令执行成功。
(integer) 1
redis 127.0.0.1:6379> setnx mykey "world" #该键已经存在,因此本次设置没有产生任何效果。
(integer) 0
redis 127.0.0.1:6379> get mykey #从结果可以看出,返回的值仍为第一次设置的值。
"hello"
redis 127.0.0.1:6379> mset key1 "hello" key2 "world" #批量设置了key1和key2两个键。
OK
redis 127.0.0.1:6379> mget key1 key2 #批量获取了key1和key2两个键的值。
1) "hello"
2) "world"
redis 127.0.0.1:6379> msetnx key3 "zhang" key4 "san" #批量设置了key3和key4两个键,因为之前他们并不存在,所以msetnx命令执行成功并返回1。
(integer) 1
redis 127.0.0.1:6379> mget key3 key4
1) "zhang"
2) "san"
redis 127.0.0.1:6379> msetnx key3 "hello" key5 "world" #批量设置了key3和key5两个键,但是key3已经存在,所以msetnx命令执行失败并返回0。
(integer) 0
redis 127.0.0.1:6379> mget key3 key5 #批量获取key3和key5,由于key5没有设置成功,所以返回nil。
1) "zhang"
2) (nil)
---------------------- List数据类型 ----------------------------------------
概述:列表的元素类型为string,按照插入顺序排序,在列表的头部或尾部添加元素
1. LPUSH/LPUSHX/LRANGE:
redis 127.0.0.1:6379> del mykey
(integer) 1
redis 127.0.0.1:6379> lpush mykey a b c d #mykey键并不存在,该命令会创建该键及与其关联的List,之后在将参数中的values从左到右依次插入。
(integer) 4
redis 127.0.0.1:6379> lrange mykey 0 2 #取从位置0开始到位置2结束的3个元素。
1) "d"
2) "c"
3) "b"
redis 127.0.0.1:6379> lrange mykey 0 -1 #取链表中的全部元素,其中0表示第一个元素,-1表示最后一个元素。
1) "d"
2) "c"
3) "b"
4) "a"
redis 127.0.0.1:6379> lpushx mykey2 e #mykey2键此时并不存在,因此lpushx命令将不会进行任何操作,其返回值为0。
(integer) 0
redis 127.0.0.1:6379> lrange mykey2 0 -1 #可以看到mykey2没有关联任何List Value。
(empty list or set)
redis 127.0.0.1:6379> lpushx mykey e #mykey键此时已经存在,所以lpushx命令插入成功,并返回链表中当前元素的数量。
(integer) 5
redis 127.0.0.1:6379> lrange mykey 0 0 #获取该键的List Value的头部元素。
1) "e"
redis 127.0.0.1:6379> del mykey
(integer) 1
redis 127.0.0.1:6379> lpush mykey a b c d
(integer) 4
redis 127.0.0.1:6379> lpop mykey #移除并返回mykey键的第一个元素,从左取
"d"
redis 127.0.0.1:6379> lpop mykey
"c"
redis 127.0.0.1:6379> llen mykey #在执行lpop命令两次后,链表头部的两个元素已经被弹出,此时链表中元素的数量是2
(integer) 2
redis 127.0.0.1:6379> del mykey
(integer) 1
redis 127.0.0.1:6379> lpush mykey a b c d a c #为后面的示例准备测试数据。
(integer) 6
redis 127.0.0.1:6379> lrem mykey 2 a #从头部(left)向尾部(right)变量链表,删除2个值等于a的元素,返回值为实际删除的数量。
(integer) 2
redis 127.0.0.1:6379> lrange mykey 0 -1 #看出删除后链表中的全部元素。
1) "c"
2) "d"
3) "c"
4) "b"
redis 127.0.0.1:6379> lindex mykey 1 #获取索引值为1(头部的第二个元素)的元素值。
"d"
redis 127.0.0.1:6379> lset mykey 1 e #将索引值为1(头部的第二个元素)的元素值设置为新值e。
OK
redis 127.0.0.1:6379> lindex mykey 1 #查看是否设置成功。
"e"
redis 127.0.0.1:6379> lindex mykey 6 #索引值6超过了链表中元素的数量,该命令返回nil。
(nil)
redis 127.0.0.1:6379> lset mykey 6 hh #设置的索引值6超过了链表中元素的数量,设置失败,该命令返回错误信息。
(error) ERR index out of range
redis 127.0.0.1:6379> ltrim mykey 0 2 #仅保留索引值0到2之间的3个元素,注意第0个和第2个元素均被保留。
OK
redis 127.0.0.1:6379> lrange mykey 0 -1 #查看trim后的结果。
1) "c"
2) "e"
3) "c"
redis 127.0.0.1:6379> del mykey #删除该键便于后面的测试。
(integer) 1
redis 127.0.0.1:6379> lpush mykey a b c d e #为后面的示例准备测试数据。
(integer) 5
redis 127.0.0.1:6379> linsert mykey before a a1 #在a的前面插入新元素a1。
(integer) 6。
redis 127.0.0.1:6379> lrange mykey 0 -1 #查看是否插入成功,从结果看已经插入
1) "e"
2) "d"
3) "c"
4) "b"
5) "a1"
6) "a"
redis 127.0.0.1:6379> linsert mykey after e e2 #在e的后面插入新元素e2,从返回结果看已经插入成功。
(integer) 7
redis 127.0.0.1:6379> lindex mykey 1 #再次查看是否插入成功。
"e2"
redis 127.0.0.1:6379> linsert mykey after k a #在不存在的元素之前或之后插入新元素,linsert命令操作失败,并返回-1。
(integer) -1
redis 127.0.0.1:6379> linsert mykey1 after a a2 #为不存在的Key插入新元素,linsert命令操作失败,返回0。
(integer) 0
redis 127.0.0.1:6379> del mykey #删除该键,以便于后面的测试。
(integer) 1
redis 127.0.0.1:6379> rpush mykey a b c d #从链表的尾部插入参数中给出的values,插入顺序是从右到左依次插入。
(integer) 4
redis 127.0.0.1:6379> lrange mykey 0 -1 #通过lrange命令可以获悉rpush在插入多值时的插入顺序。
1) "a"
2) "b"
3) "c"
4) "d"
redis 127.0.0.1:6379> rpushx mykey e #该键已经存在并且包含4个元素,rpushx命令将执行成功,并将元素e插入到链表的尾部。
(integer) 5
redis 127.0.0.1:6379> lindex mykey 4 #通过lindex命令可以看出之前的rpushx命令确实执行成功,因为索引值为4的元素已经是新元素了。
"e"
redis 127.0.0.1:6379> rpushx mykey2 e #由于mykey2键并不存在,因此rpushx命令不会插入数据,其返回值为0。
(integer) 0
redis 127.0.0.1:6379> lrange mykey 0 -1 #在执行rpoplpush命令前,先看一下mykey中链表的元素有哪些,注意他们的位置关系。
1) "a"
2) "b"
3) "c"
4) "d"
5) "e"
127.0.0.1:6379> RPOP mykey #移除并返回mykey键的第一个元素,从右取
"e"
127.0.0.1:6379> LRANGE mykey 0 -1
1) "a"
2) "b"
3) "c"
4) "d"
redis 127.0.0.1:6379> rpoplpush mykey mykey2 #将mykey的尾部元素e弹出,同时再插入到mykey2的头部(原子性的完成这两步操作)。
"d"
redis 127.0.0.1:6379> lrange mykey 0 -1 #通过lrange命令查看mykey在弹出尾部元素后的结果。
1) "a"
2) "b"
3) "c"
redis 127.0.0.1:6379> lrange mykey2 0 -1 #通过lrange命令查看mykey2在插入元素后的结果。
1) "d"
redis 127.0.0.1:6379> rpoplpush mykey mykey #将source和destination设为同一键,将mykey中的尾部元素移到其头部。
"c"
redis 127.0.0.1:6379> lrange mykey 0 -1 #查看移动结果。
1) "c"
2) "a"
3) "b"
---------------------- Hash数据类型(散列类型) ----------------------------------------
概述:hash用于存储对象。可以采用这样的命名方式:对象类别和ID构成键名,使用字段表示对象的属性,而字段值则存储属性值。 如:存储 ID 为 2 的汽车对象。
如果Hash中包含很少的字段,那么该类型的数据也将仅占用很少的磁盘空间。每一个Hash可以存储4294967295个键值对。
1. HSET/HGET/HDEL/HEXISTS/HLEN/HSETNX:
redis 127.0.0.1:6379> hset myhash field1 "zhang" #给键值为myhash的键设置字段为field1,值为zhang。
(integer) 1
redis 127.0.0.1:6379> hget myhash field1 #获取键值为myhash,字段为field1的值。
"zhang"
redis 127.0.0.1:6379> hget myhash field2 #myhash键中不存在field2字段,因此返回nil。
(nil)
redis 127.0.0.1:6379> hset myhash field2 "san" #给myhash添加一个新的字段field2,其值为san。
(integer) 1
redis 127.0.0.1:6379> hlen myhash #hlen命令获取myhash键的字段数量。
(integer) 2
redis 127.0.0.1:6379> hexists myhash field1 #判断myhash键中是否存在字段名为field1的字段,由于存在,返回值为1。
(integer) 1
redis 127.0.0.1:6379> hdel myhash field1 #删除myhash键中字段名为field1的字段,删除成功返回1。
(integer) 1
redis 127.0.0.1:6379> hdel myhash field1 #再次删除myhash键中字段名为field1的字段,由于上一条命令已经将其删除,因为没有删除,返回0。
(integer) 0
redis 127.0.0.1:6379> hexists myhash field1 #判断myhash键中是否存在field1字段,由于上一条命令已经将其删除,因为返回0。
(integer) 0
redis 127.0.0.1:6379> hsetnx myhash field1 zhang #通过hsetnx命令给myhash添加新字段field1,其值为zhang,因为该字段已经被删除,所以该命令添加成功并返回1。
(integer) 1
redis 127.0.0.1:6379> hsetnx myhash field1 zhang #由于myhash的field1字段已经通过上一条命令添加成功,因为本条命令不做任何操作后返回0。
(integer) 0
redis 127.0.0.1:6379> del myhash #删除该键,便于后面示例的测试。
(integer) 1
redis 127.0.0.1:6379> hset myhash field 5 #准备测试数据,该myhash的field字段设定值5。
(integer) 1
redis 127.0.0.1:6379> hincrby myhash field 1 #hincrby命令给myhash的field字段的值加1,返回加后的结果。
(integer) 6
redis 127.0.0.1:6379> hincrby myhash field -1 #hincrby命令给myhash的field字段的值加-1,返回加后的结果。
(integer) 5
redis 127.0.0.1:6379> hincrby myhash field -10 #hincrby命令给myhash的field字段的值加-10,返回加后的结果。
(integer) -5
redis 127.0.0.1:6379> del myhash #删除该键,便于后面示例测试。
(integer) 1
redis 127.0.0.1:6379> hmset myhash field1 "hello" field2 "world" #hmset命令为该键myhash,一次性设置多个字段,分别是field1="hello", field2="world"。
OK
redis 127.0.0.1:6379> hmget myhash field1 field2 field3 #hmget命令获取myhash键的多个字段,其中field3并不存在,因为在返回结果中与该字段对应的值为nil。
1) "hello"
2) "world"
3) (nil)
redis 127.0.0.1:6379> hgetall myhash #hgetall命令返回myhash键的所有字段及其值,从结果中可以看出,他们是逐对列出的。
1) "field1"
2) "hello"
3) "field2"
4) "world"
redis 127.0.0.1:6379> hkeys myhash #hkeys命令仅获取myhash键中所有字段的名字。
1) "field1"
2) "field2"
redis 127.0.0.1:6379> hvals myhash #hvals命令仅获取myhash键中所有字段的值。
1) "hello"
2) "world"
---------------------- Set数据类型(无序集合) ----------------------------------------
概述:无序集合,元素类型为String类型,元素具有唯一性,不允许存在重复的成员。多个集合类型之间可以进行并集、交集和差集运算。
应用范围:
1.可以使用Redis的Set数据类型跟踪一些唯一性数据,比如访问某一博客的唯一IP地址信息。对于此场景,我们仅需在每次访问该博客时将访问者的IP存入Redis中,Set数据类型会自动保证IP地址的唯一性。
2.充分利用Set类型的服务端聚合操作方便、高效的特性,可以用于维护数据对象之间的关联关系。比如所有购买某一电子设备的客户ID被存储在一个指定的Set中,而购买另外一种电子产品的客户ID被存储在另外一个Set中,如果此时我们想获取有哪些客户同时购买了这两种商品时,Set的intersections命令就可以充分发挥它的方便和效率的优势了。
redis 127.0.0.1:6379> sadd myset a b c #插入测试数据,由于该键myset之前并不存在,因此参数中的三个成员都被正常插入。
(integer) 3
redis 127.0.0.1:6379> sadd myset a d e #由于参数中的a在myset中已经存在,因此本次操作仅仅插入了d和e两个新成员。
(integer) 2
redis 127.0.0.1:6379> sismember myset a #判断a是否已经存在,返回值为1表示存在。
(integer) 1
redis 127.0.0.1:6379> sismember myset f #判断f是否已经存在,返回值为0表示不存在。
(integer) 0
redis 127.0.0.1:6379> smembers myset #通过smembers命令查看插入的结果,从结果可以看出,输出的顺序和插入顺序无关。
1) "c"
2) "d"
3) "a"
4) "b"
5) "e"
redis 127.0.0.1:6379> scard myset #获取Set集合中元素的数量。
(integer) 5
redis 127.0.0.1:6379> del myset #删除该键,便于后面的测试。
(integer) 1
redis 127.0.0.1:6379> sadd myset a b c d #为后面的示例准备测试数据。
(integer) 4
redis 127.0.0.1:6379> smembers myset #查看Set中成员的位置。
1) "c"
2) "d"
3) "a"
4) "b"
redis 127.0.0.1:6379> srandmember myset #从结果可以看出,该命令确实是随机的返回了某一成员。
"c"
redis 127.0.0.1:6379> spop myset #随机的移除并返回Set中的某一成员。
"b"
redis 127.0.0.1:6379> smembers myset #查看移出后Set的成员信息。
1) "c"
2) "d"
3) "a"
redis 127.0.0.1:6379> srem myset a d f #从Set中移出a、d和f三个成员,其中f并不存在,因此只有a和d两个成员被移出,返回为2。
(integer) 2
redis 127.0.0.1:6379> smembers myset #查看移出后的输出结果。
1) "c"
redis 127.0.0.1:6379> sadd myset a b #为后面的smove命令准备数据。
(integer) 2
redis 127.0.0.1:6379> sadd myset2 c d
(integer) 2
redis 127.0.0.1:6379> smove myset myset2 a #将a从myset移到myset2,从结果可以看出移动成功。
(integer) 1
redis 127.0.0.1:6379> smove myset myset2 a #再次将a从myset移到myset2,由于此时a已经不是myset的成员了,因此移动失败并返回0。
(integer) 0
redis 127.0.0.1:6379> smembers myset #分别查看myset和myset2的成员,确认移动是否真的成功。
1) "b"
redis 127.0.0.1:6379> smembers myset2
1) "c"
2) "d"
3) "a"
---------------------- Sorted Set数据类型(zset、有序集合) ----------------------------------------
概述:a、有序集合,元素类型为Sting,元素具有唯一性,不能重复。
b、每个元素都会关联一个double类型的分数score(表示权重),可以通过权重的大小排序,元素的score可以相同。
1)可以用于一个大型在线游戏的积分排行榜。每当玩家的分数发生变化时,可以执行ZADD命令更新玩家的分数,此后再通过ZRANGE命令获取积分TOP10的用户信息。当然我们也可以利用ZRANK命令通过username来获取玩家的排行信息。最后我们将组合使用ZRANGE和ZRANK命令快速的获取和某个玩家积分相近的其他用户的信息。
2)Sorted-Set类型还可用于构建索引数据。
redis 127.0.0.1:6379> zadd myzset 1 "one" #添加一个分数为1的成员。
(integer) 1
redis 127.0.0.1:6379> zadd myzset 2 "two" 3 "three" #添加两个分数分别是2和3的两个成员。
(integer) 2
redis 127.0.0.1:6379> zrange myzset 0 -1 WITHSCORES #0表示第一个成员,-1表示最后一个成员。WITHSCORES选项表示返回的结果中包含每个成员及其分数,否则只返回成员。
1) "one"
2) "1"
3) "two"
4) "2"
5) "three"
6) "3"
redis 127.0.0.1:6379> zrank myzset one #获取成员one在Sorted-Set中的位置索引值。0表示第一个位置。
(integer) 0
redis 127.0.0.1:6379> zrank myzset four #成员four并不存在,因此返回nil。
(nil)
redis 127.0.0.1:6379> zcard myzset #获取myzset键中成员的数量。
(integer) 3
redis 127.0.0.1:6379> zcount myzset 1 2 #zcount key min max,分数满足表达式1 <= score <= 2的成员的数量。
(integer) 2
redis 127.0.0.1:6379> zrem myzset one two #删除成员one和two,返回实际删除成员的数量。
(integer) 2
redis 127.0.0.1:6379> zcard myzset #查看是否删除成功。
(integer) 1
redis 127.0.0.1:6379> zscore myzset three #获取成员three的分数。返回值是字符串形式。
"3"
redis 127.0.0.1:6379> zscore myzset two #由于成员two已经被删除,所以该命令返回nil。
(nil)
redis 127.0.0.1:6379> zincrby myzset 2 one #成员one不存在,zincrby命令将添加该成员并假设其初始分数为0,将成员one的分数增加2,并返回该成员更新后的分数。
"2"
redis 127.0.0.1:6379> zincrby myzset -1 one #将成员one的分数增加-1,并返回该成员更新后的分数。
"1"
redis 127.0.0.1:6379> zrange myzset 0 -1 WITHSCORES #查看在更新了成员的分数后是否正确。
1) "one"
2) "1"
3) "three"
4) "3"
redis 127.0.0.1:6379> del myzset
(integer) 1
redis 127.0.0.1:6379> zadd myzset 1 one 2 two 3 three 4 four
(integer) 4
redis 127.0.0.1:6379> zrangebyscore myzset 1 2 #zrangebyscore key min max,获取分数满足表达式1 <= score <= 2的成员。
1) "one"
2) "two"
redis 127.0.0.1:6379> zrangebyscore myzset (1 2 #获取分数满足表达式1 < score <= 2的成员。
1) "two"
redis 127.0.0.1:6379> zrangebyscore myzset -inf +inf limit 2 3 #-inf表示第一个成员(位置索引值最低的,即0),+inf表示最后一个成员(位置索引值最高的),limit后面的参数用于限制返回成员的值,2表示从位置索引等于2的成员开始,取后面3个成员。
1) "three"
2) "four"
redis 127.0.0.1:6379> zrangebyscore myzset 0 4 limit 2 3
(integer) 2
redis 127.0.0.1:6379> zrange myzset 0 -1 #看出一下上面的删除是否成功。
1) "three"
2) "four"
redis 127.0.0.1:6379> zremrangebyrank myzset 0 1 #删除位置索引满足表达式0 <= rank <= 1的成员。
(integer) 2
redis 127.0.0.1:6379> zcard myzset #查看上一条命令是否删除成功。
(integer) 0
redis 127.0.0.1:6379> del myzset #为后面的示例准备测试数据。
(integer) 0
redis 127.0.0.1:6379> zadd myzset 1 one 2 two 3 three 4 four
(integer) 4
redis 127.0.0.1:6379> zrevrange myzset 0 -1 WITHSCORES #以位置索引从高到低的方式获取并返回此区间内的成员。
1) "four"
2) "4"
3) "three"
4) "3"
5) "two"
6) "2"
7) "one"
8) "1"
redis 127.0.0.1:6379> zrevrange myzset 1 3 #由于是从高到低的排序,所以位置等于0的是four,1是three,并以此类推。
1) "three"
2) "two"
3) "one"
redis 127.0.0.1:6379> zrevrank myzset one #由于是从高到低的排序,所以one的位置是3。
(integer) 3
redis 127.0.0.1:6379> zrevrank myzset four #由于是从高到低的排序,所以four的位置是0。
(integer) 0
redis 127.0.0.1:6379> zrevrangebyscore myzset 3 0 #zrevrangebyscore key max min, 获取分数满足表达式3 >= score >= 0 的成员,并以从高到底的顺序输出。
1) "three"
2) "two"
3) "one"
redis 127.0.0.1:6379> zrevrangebyscore myzset 4 0 limit 1 2 #zrevrangebyscore命令支持limit选项,其含义等同于zrangebyscore中的该选项,只是在计算位置时按照相反的顺序计算和获取。
1) "three"
2) "two"
192.168.80.10:6379> zrevrangebyscore myzset +inf -inf limit 1 3
1 . string类型
读命令通过get关键字实现,get [key]
2 . list列表类型
通过rpush、lpush,将一个或多个值向右或向左推入。
rpush [key] [value1] [value2],将value值推入到列表的右端。
lpush [key] [value1] [value2],将value值推入到列表的左端
lrange level 0 -1 ,查看列表key为level的所有元素
3 . 哈希(hash)
hmset命令可写入hash类型的值,hmset [key] [field1] [value1] [field2] [value2]
hgetall okevin #返回所有的键值对,奇数列为field,偶数列为value
4 . 集合(set)
sadd命令将一个或多个元素添加到集合里,并返回被添加元素中原本并不存在集合中的元素数量,sadd [key] [member] [member]
smembers命令返回集合中包含的所有元素,smembers [key]
5 . 有序集合对象(zset)
zadd用于有序集合的写入操作,zadd [key] [score1] [member1] [score2] [member2]……
zcard命令用于返回有序集合中的成员数量,zcard [key]
NoSQL 之Redis的5大数据类型的更多相关文章
- 跟着大彬读源码 - Redis 5 - 对象和数据类型(上)
相信很多人应该都知道 Redis 有五种数据类型:字符串.列表.哈希.集合和有序集合.但这五种数据类型是什么含义?Redis 的数据又是怎样存储的?今天我们一起来认识下 Redis 这五种数据结构的含 ...
- NoSQL:redis缓存数据库
一 Redis介绍 Redis和Memcached类似,也属于key-value nosql 数据库 Redis官网redis.io, 当前最新稳定版4.0.1 和Memcached类似,它支持存储的 ...
- NOSQL之REDIS
Redis是NoSQL中比较常典型的一个非关系型数据库,在日常工作中也是最为常见的.Redis是一个由C语言编写的开源的.遵守BSD协议.支持网络.可基于内存亦可持久化的日志型.Key-Value数据 ...
- NoSQL之Redis学习笔记
一.NoSQL与Redis 1.什么是NoSQL? NoSQL=Not Only SQL ,泛指非关系型数据库.随着互联网的兴起,传统的关系型数据库已经暴露了很多问题,NoSQL数据库的产生就是为了解 ...
- NoSQL 之 Redis配置与优化
NoSQL 之 Redis配置与优化 1.关系数据库与非关系型数据库概述 2.关系数据库与非关系型数据库区别 3.非关系型数据库产生背景 4.Redis简介 5.Redis安装部署 6.Redis 命 ...
- NoSQL之Redis配置与优化
NoSQL之Redis配置与优化 目录 NoSQL之Redis配置与优化 一.关系数据库和非关系数据库 1. 关系型数据库 2. 非关系型数据库 3. 非关系型数据库产生背景 4. 关系型数据库和非关 ...
- Redis学习笔记1-Redis数据类型
Redis数据类型 Redis支持5种数据类型,它们描述如下: Strings - 字符串 字符串是 Redis 最基本的数据类型.Redis 字符串是二进制安全的,也就是说,一个 Redis 字符串 ...
- Redis系列(2)之数据类型
Redis系列(2)之数据类型 <Redis系列(1)之安装>中介绍了Redis支持以下几种数据类型,那么本节主要介绍学习下这几种数据类型的基本操作 字符串类型,string 散列类型,h ...
- Redis API与常用数据类型简介
Redis API与常用数据类型简介 一.Redis API For .Net 首先,不得不说Redis官方提供了众多的API开发包,但是目前Redis官方版本不支持.Net直接进行连接,需要使用一些 ...
随机推荐
- 解决vite+elementplus 打包后出现的下拉列表多出空元素的bug
打包后下拉列表出现的空元素bug 之前的项目element-plus版本是 "^1.0.2-beta.70" 把他升级一下就好了 npm i element-plus@1.0.2 ...
- 图解四种 IO 模型
最近越来越认为,在讲解技术相关问题时,大白话固然很重要,通俗易懂,让人有想读下去的欲望.但几乎所有的事,都有两面性,在看到其带来好处时,不妨想想是否也引入了不好的地方. 例如在博客中,过于大白话的语言 ...
- Kylin开启Kerberos安全认证
Kylin开启Kerberos安全认证, 由于Kylin是依赖Hbase启动的, Kylin启动脚本kylin.sh中就是调用的Hbase的启动脚本, 所以当Hbase开启了Keberos之后就等于K ...
- .NET 云原生架构师训练营(模板方法 && 建造者)--学习笔记
目录 模板方法 源码 建造者 模板方法 定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤 源码 https://github.com ...
- Python_上下文管理器
上下文管理器(context manager)是 Python 编程中的重要概念,用于规定某个对象的使用范围.一旦进入或者离开该使用范围,会有特殊操作被调用 (比如为对象分配或者释放内存).它的语法形 ...
- celery起动,运行有警告
运行命令 : celery worker -A task_log -l info: 有如下警告 2019-12-22 22:42:50,215: WARNING/MainProcess] /root ...
- PowerShell【Do While、Do Until篇】
1 $num=0 2 while($num -le 10) 3 { 4 $num 5 $num+=1 6 } 1 $num=0 2 do 3 { 4 $num 5 $num+=1 6 } 7 whil ...
- 一条 Git 命令减少了一般存储空间,我的服务器在偷着笑
元旦不是搭建了一个<Java 程序员进阶之路>的网站嘛,其中用到了 Git 来作为云服务器和 GitHub 远程仓库之间的同步工具. 作为开发者,相信大家都知道 Git 的重要性.Git ...
- 【JavaWeb】CVE-2016-4437 Shiro反序列化漏洞分析及代码审计
Shiro反序列化漏洞分析及代码审计 漏洞简介 Apache Shiro是一个强大且易用的Java安全框架,执行身份验证.授权.密码和会话管理. Apache Shiro默认使用了CookieRe ...
- deepin20使用snap并设置代理
snap下载 $ sudo apt update $ sudo apt install snapd https://snapcraft.io/docs/installing-snap-on-ubunt ...