正题

题目链接:https://www.luogu.com.cn/problem/P6800


题目大意

给出一个\(n\)此多项式\(P\),对于\(k\in[0,m-1]\)所有的求\(P(c^k)\)

输出答案对\(998244353\)取模

\(1\leq n,m\leq 10^6\)


解题思路

\[g(n)=\sum_{i=0}^{n-1}a_ic^{i\times n}
\]

然后根据\(i\times n=\binom{i+n}{2}-\binom{i}{2}-\binom{n}{2}\)有

\[g(n)=c^{-\binom{n}{2}}\sum_{i=0}^{n-1}a_ic^{\binom{i+n}{2}}c^{-\binom{i}{2}}
\]

然后这是一个反着卷积的形式,直接上NTT就好了

时间复杂度\(O(n\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const ll N=4e6+10,P=998244353;
ll n,m,c,a[N],r[N],F[N],G[N];
ll power(ll x,ll b){
ll ans=1;b%=P-1;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
ll C(ll n)
{return n*(n-1)/2;}
void NTT(ll *f,ll n,ll op){
for(ll i=0;i<n;i++)
if(i<r[i])swap(f[i],f[r[i]]);
for(ll p=2;p<=n;p<<=1){
ll tmp=power(3,(P+1)/p),len=p>>1;
if(op==-1)tmp=power(tmp,P-2);
for(ll k=0;k<n;k+=p){
ll buf=1;
for(ll i=k;i<k+len;i++){
ll tt=f[i+len]*buf%P;
f[i+len]=(f[i]-tt+P)%P;
f[i]=(f[i]+tt)%P;
buf=buf*tmp%P;
}
}
}
if(op==-1){
ll invn=power(n,P-2);
for(ll i=0;i<n;i++)
f[i]=f[i]*invn%P;
}
return;
}
signed main()
{
scanf("%lld%lld%lld",&n,&c,&m);
ll inv=power(c,P-2);
for(ll i=0;i<n;i++)
scanf("%lld",&a[i]);
for(ll i=0;i<n+m;i++)
F[i]=power(c,C(n+m-i-1));
for(ll i=0;i<n;i++)
G[i]=a[i]*power(inv,C(i))%P;
ll len=1;
while(len<n+m)len<<=1;
for(ll i=0;i<len;i++)
r[i]=(r[i>>1]>>1)|((i&1)?(len>>1):0);
NTT(F,len,1);NTT(G,len,1);
for(ll i=0;i<len;i++)F[i]=F[i]*G[i]%P;
NTT(F,len,-1);
for(ll i=n+m-1;i>=n;i--)
printf("%lld ",F[i]*power(inv,C(n+m-i-1))%P);
return 0;
}

P6800-[模板]Chirp Z-Transform【NTT】的更多相关文章

  1. 洛谷P3803 【模板】多项式乘法 [NTT]

    题目传送门 多项式乘法 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字, ...

  2. [洛谷P4245]【模板】任意模数NTT

    题目大意:给你两个多项式$f(x)$和$g(x)$以及一个模数$p(p\leqslant10^9)$,求$f*g\pmod p$ 题解:任意模数$NTT$,最大的数为$p^2\times\max\{n ...

  3. 洛谷.4238.[模板]多项式求逆(NTT)

    题目链接 设多项式\(f(x)\)在模\(x^n\)下的逆元为\(g(x)\) \[f(x)g(x)\equiv 1\ (mod\ x^n)\] \[f(x)g(x)-1\equiv 0\ (mod\ ...

  4. DevExpress SpreadSheet报表模板设置 z

    DevExpres SpreadSheetControl报表模板设置,这一个还是挺牛逼的,字段绑定直接在单元格里面设置公式(=Field("字段名")),当然直接拖更方便, 跟xt ...

  5. Luogu 4245 【模板】任意模数NTT

    这个题还有一些其他的做法,以后再补,先记一下三模数$NTT$的方法. 发现这个题不取模最大的答案不会超过$10^5 \times 10^9 \times 10^9 = 10^{23}$,也就是说我们可 ...

  6. 洛谷4245:【模板】任意模数NTT——题解

    https://www.luogu.org/problemnew/show/P4245 给两个多项式,求其乘积,每个系数对p取模. 参考: 代码与部分理解参考https://www.luogu.org ...

  7. 洛谷 4245 【模板】任意模数NTT——三模数NTT / 拆系数FFT

    题目:https://www.luogu.org/problemnew/show/P4245 三模数NTT: 大概是用3个模数分别做一遍,用中国剩余定理合并. 前两个合并起来变成一个 long lon ...

  8. P4245 【模板】任意模数NTT

    Luogu4245 只要做三次的NTT,快的飞起 普通NTT,做9次 #include<cstdio> #include<cstring> #include<iostre ...

  9. 【模板】任意模数NTT

    题目描述: luogu 题解: 用$fft$水过(什么$ntt$我不知道). 众所周知,$fft$精度低,$ntt$处理范围小. 所以就有了任意模数ntt神奇$fft$! 意思是这样的.比如我要算$F ...

随机推荐

  1. 剑指 Offer 13. 机器人的运动范围

    剑指 Offer 13. 机器人的运动范围 地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] .一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左.右.上.下移动一 ...

  2. Ratel:一直站在Android逆向巅峰的平头哥

    本文来源:带动行业内卷,渣总义不容辞 字越少事儿越大,请关注github(可以点击阅读原文): https://github.com/virjarRatel 平头哥(ratel)是一个Android逆 ...

  3. qt work

    auto folder1="./.mm"; QDir *folder = new QDir; bool exist = folder->exists(folder1); if ...

  4. ANSI C说明了三个用于存储空间动态分配的函数

    1.1 malloc的全称是memory allocation,中文叫动态内存分配.原型:extern void *malloc(unsigned int num_bytes);说明:分配长度为num ...

  5. Wpf程序显示在任务栏

    后台代码如下: using System; using System.Collections.Generic; using System.Drawing; using System.IO; using ...

  6. 网络视频m3u8解密及ts文件合并

    网络视频m3u8解密及ts文件合并 参考了两篇博客: https://blog.csdn.net/weixin_41624645/article/details/95939510 https://bl ...

  7. Hibernate框架基本使用

    时间:2017-1-16 00:36 --什么是Hibernate    Hibernate是一个开放源代码的关系映射框架,它对JDBC进行了非常轻量级的对象封装,使得Java程序员可以使用对象编程思 ...

  8. 《深入理解java虚拟机》第3版笔记3

    第3章 垃圾收集器与内存分配策略 可达性分析算法 在Java技术体系里面,固定可作为GC Roots的对象包括以下几种: 在虚拟机栈(栈帧中的本地变量表)中引用的对象,譬如各个线程被调用的方法堆栈中使 ...

  9. vue 中this.$on 为什么要放在created中?

    最近在思考一个问题为什么一定要在created中写this.$on,可以放在mounted中吗 如果触发和监听组件在页面上都创建了,那么可以放在mounted中 这种情况在实际工作中比较常见,如果在触 ...

  10. VPS系统后台性能优化实战

    作者: 刘用, 现任新东方APP团队高级软件工程师 2019年开始,新东方APP团队启动了长达半年以上的稳定性建设工作,为什么稳定性如此重要?因为随着每年30%以上的高速增长,现有的后端服务完全扛不住 ...