显然问题被分为两部分,先考虑如何求$F(n)$——

令第一次所选的人编号为1,其之后所有人按顺时针依次编号为$2,3,...,n$,那么用一个序列来描述状态,其中第$i$个元素为当前存在的人中编号第$i$小的人手牌数(显然序列长度即为剩余人数)

初始序列显然为$\{1,1,...,1\}$(共$n$个1),并对$n$的奇偶性分类讨论:

1.若$n$为奇数,则$n$轮后序列为$\{3,2,2,...,2\}$(其中共$\frac{n-3}{2}$个2)

2.若$n$为偶数,则$n$轮后序列为$\{4,2,2,...,2\}$(其中共$\frac{n}{2}-2$个2)

(关于这个结果,手动模拟若干次即可得到规律)

注意到此时所有元素都$\ge 2$,那么若序列长度为$2m+1$(其中$m\in Z^{+}$),循环节即恰为$4m+2$

关于这个性质,考虑两轮中每一个人都会在奇数轮操作一次、偶数轮操作一次,那么总共即恰好失去3张卡片并得到3张卡片,因此卡牌数量不变,且由于初始有两张卡片,不会有人"出局"

下面,考虑序列长度为$2m$,再对两类分别讨论:

1.若$n$为奇数(注意不是$m$),则$2m$轮后序列为$\{2,3,1,3,1,3...,1,3\}$(其中共$m-1$对$1,3$),再$2m$轮后序列为$\{5,4,4,...,4\}$(其中共$m-1$个4)

不难发现如果序列长度仍是偶数,其又会变为$\{9,8,8,...,8\},\{17,16,16,...,16\},...$(可以归纳证明),直至序列长度为奇数(答案为序列长度的两倍)

2.若$n$为偶数,类似的$4m$轮后序列为$\{6,4,4,...,4\}$(其中共$m-1$个4),如果序列长度仍是偶数,其又会变为$\{10,8,8,...,8\},\{18,16,16,...,16\},...$,直至序列长度为奇数

(另外,若最终序列长度为1则$F(n)=0$)

综上,有
$$
F(n)=\begin{cases}0&\left(n\le 2\right)\or \left(lowbit(m)=1\right)\\\frac{2m}{lowbit(m)}&\left(n\ge 3\right)\and \left(lowbit(m)\ne 1\right)\end{cases}
$$
(其中$m=\lfloor\frac{n-1}{2}\rfloor$,$lowbit(m)$指$m$二进制下最低位上的1对应的值)

接下来,考虑如何求$\forall 1\le x\le n,\sum_{i=1}^{n}F(v_{i}+d(i,x))$——

将其点分治,问题即是要维护一个集合$S$,支持:1.加入一个元素$x$;2.(给定$x$)查询$\sum_{y\in S}F(x+y)$

这个并不容易维护,但注意到查询中$x$即为某点到当前点分中心的距离,是连续变化的,因此这个问题还可以看作支持:1.加入一个元素$x$;2.令所有元素+1;3.查询$\sum_{x\in S}F(x)$

维护一棵trie树,并且从低到高存储数字,依次考虑这些操作:

1.加入一个元素$x$,与普通的trie树相同

2.令所有元素+1,即不断交换左右儿子,并递归(新的)左儿子即可

3.查询$\sum_{x\in S}F(x)$,不断递归左儿子,维护子树中所有元素的和即可(注意去掉$lowbit(m)=1$的情况)

由此,单次操作时间复杂度为$o(\log n)$,总复杂度即$o(n\log^{2}n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define ll long long
5 struct Edge{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v[N];
9 int E,rt,t,n,x,y,mx,a[N],head[N],vis[N],sz[N],f[N<<2];
10 ll ans[N];
11 int lowbit(int k){
12 return (k&(-k));
13 }
14 namespace Trie{
15 int V,tag,st[N],L[N*6],sz[N*6],ch[N*6][2];
16 ll sum[N*6];
17 int New(){
18 int k=++V;
19 L[k]=sz[k]=sum[k]=ch[k][0]=ch[k][1]=0;
20 return k;
21 }
22 ll get(int k){
23 return sum[k]+(ll)tag*sz[k];
24 }
25 void init(){
26 V=tag=0;
27 New();
28 }
29 void add_val(int x){
30 st[0]=st[1]=1;
31 for(int i=0,k=1;i<18;i++){
32 int p=((x>>i)&1);
33 if (!ch[k][p])ch[k][p]=New();
34 k=st[++st[0]]=ch[k][p];
35 }
36 for(int i=1;i<=st[0];i++)sz[st[i]]++,sum[st[i]]+=x;
37 L[st[st[0]]]=st[st[0]];
38 for(int i=st[0]-1;i;i--)L[st[i]]=L[ch[st[i]][0]];
39 }
40 void Add(){
41 tag++;
42 st[0]=st[1]=1;
43 for(int i=0,k=1;(i<18)&&(k);i++){
44 swap(ch[k][0],ch[k][1]);
45 k=st[++st[0]]=ch[k][0];
46 }
47 L[st[st[0]]]=st[st[0]];
48 for(int i=st[0]-1;i;i--)L[st[i]]=L[ch[st[i]][0]];
49 }
50 ll query(){
51 ll ans=0;
52 for(int i=1,k=ch[1][0];(i<18)&&(k);i++){
53 ans+=(get(ch[k][1])-get(L[ch[k][1]])>>i-1);
54 k=ch[k][0];
55 }
56 tag--;
57 for(int i=1,k=ch[1][1];(i<18)&&(k);i++){
58 ans+=(get(ch[k][1])-get(L[ch[k][1]])>>i-1);
59 k=ch[k][0];
60 }
61 tag++;
62 return ans;
63 }
64 }
65 void add_edge(int x,int y){
66 edge[E].nex=head[x];
67 edge[E].to=y;
68 head[x]=E++;
69 }
70 void get_sz(int k,int fa){
71 sz[k]=1;
72 for(int i=head[k];i!=-1;i=edge[i].nex)
73 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
74 get_sz(edge[i].to,k);
75 sz[k]+=sz[edge[i].to];
76 }
77 }
78 void get_rt(int k,int fa,int s){
79 int mx=s-sz[k];
80 for(int i=head[k];i!=-1;i=edge[i].nex)
81 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
82 get_rt(edge[i].to,k,s);
83 mx=max(mx,sz[edge[i].to]);
84 }
85 if (mx<=(s>>1))rt=k;
86 }
87 void get_val(int k,int fa,int s){
88 if (mx<s)v[++mx].clear();
89 v[s].push_back(k);
90 Trie::add_val(a[k]+s);
91 for(int i=head[k];i!=-1;i=edge[i].nex)
92 if ((!vis[edge[i].to])&&(edge[i].to!=fa))get_val(edge[i].to,k,s+1);
93 }
94 void calc(int k,int p){
95 Trie::init();
96 mx=0,v[0].clear();
97 get_val(k,0,p);
98 p=1-(p<<1);
99 for(int i=0;i<=mx;i++){
100 ll s=Trie::query();
101 for(int j=0;j<v[i].size();j++)ans[v[i][j]]+=p*s;
102 Trie::Add();
103 }
104 }
105 void dfs(int k){
106 get_sz(k,0);
107 get_rt(k,0,sz[k]);
108 calc(rt,0);
109 vis[rt]=1;
110 for(int i=head[rt];i!=-1;i=edge[i].nex)
111 if (!vis[edge[i].to])calc(edge[i].to,1);
112 for(int i=head[rt];i!=-1;i=edge[i].nex)
113 if (!vis[edge[i].to])dfs(edge[i].to);
114 }
115 int main(){
116 for(int i=2;i<(N<<2);i++)
117 if (lowbit(i>>1)==1)f[i]=0;
118 else f[i]=((i>>1)/lowbit(i>>1)<<1);
119 scanf("%d",&t);
120 while (t--){
121 scanf("%d",&n);
122 E=0;
123 memset(head,-1,sizeof(head));
124 memset(vis,0,sizeof(vis));
125 memset(ans,0,sizeof(ans));
126 for(int i=1;i<=n;i++){
127 scanf("%d",&a[i]);
128 a[i]--;
129 }
130 for(int i=1;i<n;i++){
131 scanf("%d%d",&x,&y);
132 add_edge(x,y);
133 add_edge(y,x);
134 }
135 dfs(1);
136 for(int i=1;i<n;i++)printf("%lld ",ans[i]);
137 printf("%lld\n",ans[n]);
138 }
139 return 0;
140 }

[hdu7078]Pty with card的更多相关文章

  1. Lesson 3 Please send me a card

    Text Postcards always spoil my holidays. Last summer, I went to Italy. I visited museums and sat in ...

  2. iOS - Card Identification 银行卡号识别

    1.CardIO 识别 框架 GitHub 下载地址 配置 1.把框架整个拉进自己的工程,然后在 TARGETS => Build Phases => Link Binary With L ...

  3. bzoj3756: Pty的字符串

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  4. HDOJ 4336 Card Collector

    容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  5. Opensuse enable sound and mic card

    Install application pavucontrol Run pavucontrol You will see the configuration about sound card and ...

  6. 进监狱全攻略之 Mifare1 Card 破解

    补充新闻:程序员黑餐馆系统 给自己饭卡里充钱 ,技术是双刃剑,小心,小心! 前言 从M1卡的验证漏洞被发现到现今,破解设备层出不穷,所以快速傻瓜式一键破解不是本文的重点,年轻司机将从本文中获得如下技能 ...

  7. Card(bestcoder #26 B)

    Card Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. [OpenJudge 3061]Flip The Card

    [OpenJudge 3061]Flip The Card 试题描述 There are N× Ncards, which form an N× Nmatrix. The cards can be p ...

  9. [杂谈]交通工具orca card

    How and Where to Use the ORCA Card The Microsoft ORCA card provides unlimited rides on all buses, tr ...

随机推荐

  1. mysql学习教程之mysql管理

    MySQL 管理 启动及关闭 MySQL 服务器 Windows 系统下 在 Windows 系统下,打开命令窗口(cmd),进入 MySQL 安装目录的 bin 目录. 启动: cd c:/mysq ...

  2. 关于国密HTTPS 的那些事(二)

    关于国密HTTPS 的那些事(二) 三. 需要解决的问题 前文我们了解了https,并梳理了国密https的流程.那么完成这些流程的目的是什么呢?又是怎么来保护数据的安全性呢?我们继续... 上文我们 ...

  3. Serverless 在大规模数据处理的实践

    作者 | 西流 阿里云技术专家 前言 当您第一次接触 Serverless 的时候,有一个不那么明显的新使用方式:与传统的基于服务器的方法相比,Serverless 服务平台可以使您的应用快速水平扩展 ...

  4. Linux查找运行程序主目录

    1.查看程序所在PID netstat -lntup 2.根据PID查找程序所在目录 ll /proc/PID/exe 3.查找程序配置路径 /proc/PID/exe -t

  5. InstallSheild相关

    一.关于使用InstallSheild制作安装包的总结. 1.定制化制作需要了解InstallScript语法,相关资料可以去网上查找,后续提供比较好的资料. 2.有些软件运行是需要一些环境的,譬如使 ...

  6. 洛谷2149 Elaxia的路线(dp+最短路)

    QwQ好久没更新博客了,颓废了好久啊,来补一点东西 题目大意 给定两个点对,求两对点间最短路的最长公共路径. 其中\(n,m\le 10^5\) 比较简单吧 就是跑四遍最短路,然后把最短路上的边拿出来 ...

  7. 一个神秘的oj2093 花园的守护之神(最小割)

    给定一张无向图,你每次可以将一条路的权值增加1,询问最少增加多少次才会使得\(s->t\)的最短路改变 QwQ一看到这个题,我就用种最小割的感觉 我们可以把最短路上的点取出来,然后做最小割呀!! ...

  8. 如何查找一个目录中所有c文件的总行数

    如何查找一个目录中所有c文件的行数 面试题问到了一题,如何统计wc文件夹下所有文件的行数,包括了子目录. 最后在 https://blog.csdn.net/a_ran/article/details ...

  9. 将DataFrame赋值为可变变量在spark中多次赋值后运行速度减慢的问题

    该问题先标记上,之后有空了研究原因. 在var dataframe后将dataframe作为参数输入某方法,将结果重新赋予该dataframe,会导致spark运行显著减慢速度.暂时不知道原因,之后研 ...

  10. Java:LinkedHashMap类小记

    Java:LinkedHashMap类小记 对 Java 中的 LinkedHashMap类,做一个微不足道的小小小小记 概述 public class LinkedHashMap<K,V> ...