显然问题被分为两部分,先考虑如何求$F(n)$——

令第一次所选的人编号为1,其之后所有人按顺时针依次编号为$2,3,...,n$,那么用一个序列来描述状态,其中第$i$个元素为当前存在的人中编号第$i$小的人手牌数(显然序列长度即为剩余人数)

初始序列显然为$\{1,1,...,1\}$(共$n$个1),并对$n$的奇偶性分类讨论:

1.若$n$为奇数,则$n$轮后序列为$\{3,2,2,...,2\}$(其中共$\frac{n-3}{2}$个2)

2.若$n$为偶数,则$n$轮后序列为$\{4,2,2,...,2\}$(其中共$\frac{n}{2}-2$个2)

(关于这个结果,手动模拟若干次即可得到规律)

注意到此时所有元素都$\ge 2$,那么若序列长度为$2m+1$(其中$m\in Z^{+}$),循环节即恰为$4m+2$

关于这个性质,考虑两轮中每一个人都会在奇数轮操作一次、偶数轮操作一次,那么总共即恰好失去3张卡片并得到3张卡片,因此卡牌数量不变,且由于初始有两张卡片,不会有人"出局"

下面,考虑序列长度为$2m$,再对两类分别讨论:

1.若$n$为奇数(注意不是$m$),则$2m$轮后序列为$\{2,3,1,3,1,3...,1,3\}$(其中共$m-1$对$1,3$),再$2m$轮后序列为$\{5,4,4,...,4\}$(其中共$m-1$个4)

不难发现如果序列长度仍是偶数,其又会变为$\{9,8,8,...,8\},\{17,16,16,...,16\},...$(可以归纳证明),直至序列长度为奇数(答案为序列长度的两倍)

2.若$n$为偶数,类似的$4m$轮后序列为$\{6,4,4,...,4\}$(其中共$m-1$个4),如果序列长度仍是偶数,其又会变为$\{10,8,8,...,8\},\{18,16,16,...,16\},...$,直至序列长度为奇数

(另外,若最终序列长度为1则$F(n)=0$)

综上,有
$$
F(n)=\begin{cases}0&\left(n\le 2\right)\or \left(lowbit(m)=1\right)\\\frac{2m}{lowbit(m)}&\left(n\ge 3\right)\and \left(lowbit(m)\ne 1\right)\end{cases}
$$
(其中$m=\lfloor\frac{n-1}{2}\rfloor$,$lowbit(m)$指$m$二进制下最低位上的1对应的值)

接下来,考虑如何求$\forall 1\le x\le n,\sum_{i=1}^{n}F(v_{i}+d(i,x))$——

将其点分治,问题即是要维护一个集合$S$,支持:1.加入一个元素$x$;2.(给定$x$)查询$\sum_{y\in S}F(x+y)$

这个并不容易维护,但注意到查询中$x$即为某点到当前点分中心的距离,是连续变化的,因此这个问题还可以看作支持:1.加入一个元素$x$;2.令所有元素+1;3.查询$\sum_{x\in S}F(x)$

维护一棵trie树,并且从低到高存储数字,依次考虑这些操作:

1.加入一个元素$x$,与普通的trie树相同

2.令所有元素+1,即不断交换左右儿子,并递归(新的)左儿子即可

3.查询$\sum_{x\in S}F(x)$,不断递归左儿子,维护子树中所有元素的和即可(注意去掉$lowbit(m)=1$的情况)

由此,单次操作时间复杂度为$o(\log n)$,总复杂度即$o(n\log^{2}n)$,可以通过

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define ll long long
5 struct Edge{
6 int nex,to;
7 }edge[N<<1];
8 vector<int>v[N];
9 int E,rt,t,n,x,y,mx,a[N],head[N],vis[N],sz[N],f[N<<2];
10 ll ans[N];
11 int lowbit(int k){
12 return (k&(-k));
13 }
14 namespace Trie{
15 int V,tag,st[N],L[N*6],sz[N*6],ch[N*6][2];
16 ll sum[N*6];
17 int New(){
18 int k=++V;
19 L[k]=sz[k]=sum[k]=ch[k][0]=ch[k][1]=0;
20 return k;
21 }
22 ll get(int k){
23 return sum[k]+(ll)tag*sz[k];
24 }
25 void init(){
26 V=tag=0;
27 New();
28 }
29 void add_val(int x){
30 st[0]=st[1]=1;
31 for(int i=0,k=1;i<18;i++){
32 int p=((x>>i)&1);
33 if (!ch[k][p])ch[k][p]=New();
34 k=st[++st[0]]=ch[k][p];
35 }
36 for(int i=1;i<=st[0];i++)sz[st[i]]++,sum[st[i]]+=x;
37 L[st[st[0]]]=st[st[0]];
38 for(int i=st[0]-1;i;i--)L[st[i]]=L[ch[st[i]][0]];
39 }
40 void Add(){
41 tag++;
42 st[0]=st[1]=1;
43 for(int i=0,k=1;(i<18)&&(k);i++){
44 swap(ch[k][0],ch[k][1]);
45 k=st[++st[0]]=ch[k][0];
46 }
47 L[st[st[0]]]=st[st[0]];
48 for(int i=st[0]-1;i;i--)L[st[i]]=L[ch[st[i]][0]];
49 }
50 ll query(){
51 ll ans=0;
52 for(int i=1,k=ch[1][0];(i<18)&&(k);i++){
53 ans+=(get(ch[k][1])-get(L[ch[k][1]])>>i-1);
54 k=ch[k][0];
55 }
56 tag--;
57 for(int i=1,k=ch[1][1];(i<18)&&(k);i++){
58 ans+=(get(ch[k][1])-get(L[ch[k][1]])>>i-1);
59 k=ch[k][0];
60 }
61 tag++;
62 return ans;
63 }
64 }
65 void add_edge(int x,int y){
66 edge[E].nex=head[x];
67 edge[E].to=y;
68 head[x]=E++;
69 }
70 void get_sz(int k,int fa){
71 sz[k]=1;
72 for(int i=head[k];i!=-1;i=edge[i].nex)
73 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
74 get_sz(edge[i].to,k);
75 sz[k]+=sz[edge[i].to];
76 }
77 }
78 void get_rt(int k,int fa,int s){
79 int mx=s-sz[k];
80 for(int i=head[k];i!=-1;i=edge[i].nex)
81 if ((!vis[edge[i].to])&&(edge[i].to!=fa)){
82 get_rt(edge[i].to,k,s);
83 mx=max(mx,sz[edge[i].to]);
84 }
85 if (mx<=(s>>1))rt=k;
86 }
87 void get_val(int k,int fa,int s){
88 if (mx<s)v[++mx].clear();
89 v[s].push_back(k);
90 Trie::add_val(a[k]+s);
91 for(int i=head[k];i!=-1;i=edge[i].nex)
92 if ((!vis[edge[i].to])&&(edge[i].to!=fa))get_val(edge[i].to,k,s+1);
93 }
94 void calc(int k,int p){
95 Trie::init();
96 mx=0,v[0].clear();
97 get_val(k,0,p);
98 p=1-(p<<1);
99 for(int i=0;i<=mx;i++){
100 ll s=Trie::query();
101 for(int j=0;j<v[i].size();j++)ans[v[i][j]]+=p*s;
102 Trie::Add();
103 }
104 }
105 void dfs(int k){
106 get_sz(k,0);
107 get_rt(k,0,sz[k]);
108 calc(rt,0);
109 vis[rt]=1;
110 for(int i=head[rt];i!=-1;i=edge[i].nex)
111 if (!vis[edge[i].to])calc(edge[i].to,1);
112 for(int i=head[rt];i!=-1;i=edge[i].nex)
113 if (!vis[edge[i].to])dfs(edge[i].to);
114 }
115 int main(){
116 for(int i=2;i<(N<<2);i++)
117 if (lowbit(i>>1)==1)f[i]=0;
118 else f[i]=((i>>1)/lowbit(i>>1)<<1);
119 scanf("%d",&t);
120 while (t--){
121 scanf("%d",&n);
122 E=0;
123 memset(head,-1,sizeof(head));
124 memset(vis,0,sizeof(vis));
125 memset(ans,0,sizeof(ans));
126 for(int i=1;i<=n;i++){
127 scanf("%d",&a[i]);
128 a[i]--;
129 }
130 for(int i=1;i<n;i++){
131 scanf("%d%d",&x,&y);
132 add_edge(x,y);
133 add_edge(y,x);
134 }
135 dfs(1);
136 for(int i=1;i<n;i++)printf("%lld ",ans[i]);
137 printf("%lld\n",ans[n]);
138 }
139 return 0;
140 }

[hdu7078]Pty with card的更多相关文章

  1. Lesson 3 Please send me a card

    Text Postcards always spoil my holidays. Last summer, I went to Italy. I visited museums and sat in ...

  2. iOS - Card Identification 银行卡号识别

    1.CardIO 识别 框架 GitHub 下载地址 配置 1.把框架整个拉进自己的工程,然后在 TARGETS => Build Phases => Link Binary With L ...

  3. bzoj3756: Pty的字符串

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  4. HDOJ 4336 Card Collector

    容斥原理+状压 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/O ...

  5. Opensuse enable sound and mic card

    Install application pavucontrol Run pavucontrol You will see the configuration about sound card and ...

  6. 进监狱全攻略之 Mifare1 Card 破解

    补充新闻:程序员黑餐馆系统 给自己饭卡里充钱 ,技术是双刃剑,小心,小心! 前言 从M1卡的验证漏洞被发现到现今,破解设备层出不穷,所以快速傻瓜式一键破解不是本文的重点,年轻司机将从本文中获得如下技能 ...

  7. Card(bestcoder #26 B)

    Card Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. [OpenJudge 3061]Flip The Card

    [OpenJudge 3061]Flip The Card 试题描述 There are N× Ncards, which form an N× Nmatrix. The cards can be p ...

  9. [杂谈]交通工具orca card

    How and Where to Use the ORCA Card The Microsoft ORCA card provides unlimited rides on all buses, tr ...

随机推荐

  1. HttpClient遭遇Connection Reset异常,如何正确配置?

    最近工作中使用的HttpClient工具遇到的Connection Reset异常.在客户端和服务端配置不对的时候容易出现问题,下面就是记录一下如何解决这个问题的过程. 出现Connection Re ...

  2. Python标准库模块之heapq – 堆构造

    Python标准库模块之heapq – 堆构造 读前福利:几百本经典书籍https://www.johngo689.com/2158/ 原文链接:https://www.johngo689.com/2 ...

  3. LightningChart XY功能中的常见问题

    LightningChart XY功能中的常见问题 XY 是LightningChart 的重要功能之一,也是被用户使用最广泛的.用户经常对这个功能有着这样那样的疑问,现在将一些常用问题汇总了一下,希 ...

  4. 统计学习:线性支持向量机(SVM)

    学习策略 软间隔最大化 上一章我们所定义的"线性可分支持向量机"要求训练数据是线性可分的.然而在实际中,训练数据往往包括异常值(outlier),故而常是线性不可分的.这就要求我们 ...

  5. js正则格式化日期时间自动补0

    原文 js正则格式化日期时间自动补0 背景 时间日期格式化的需求很常见,也有很多工具类转换方法,比如需要将2022-3-4这种日期格式转化为2022-03-04,也就是实现个位数月份或天数日期自动前置 ...

  6. ssh 批量免密登陆

    SSH第一次连接远程主机 公钥交换原理 1.客户端发起链接请求2.服务端返回自己的公钥,以及一个会话ID(这一步客户端得到服务端公钥)3.客户端生成密钥对4.客户端用自己的公钥异或会话ID,计算出一个 ...

  7. JSR303数据校验

    Springboot中可以用@validated来校验数据,如果数据异常则会统一抛出异常,方便异常中心统一处理. 导入依赖: <dependency> <groupId>org ...

  8. CF468C Hack it! 超详细解答

    CF468C Hack it! 超详细解答 构造+数学推导 原文极简体验 CF468C Hack it! 题目简化: 令\(f(x)\)表示\(x\)在十进制下各位数字之和 给定一整数\(a\)构造\ ...

  9. 2021.3.10--vj补题

    B - Saving the City cf--1443B Bertown is a city with nn buildings in a straight line. The city's sec ...

  10. 分布式事物SAGA

    目录 概述SAGA SAGA的执行方式 存在的问题 重试机制 SAGA VS TCC 实现SAGA的框架 概述SAGA SAGA是1987 Hector & Kenneth 发表的论文,主要是 ...