TensorFlow实现多层感知机函数逼近

准备工作

对于函数逼近,这里的损失函数是 MSE。输入应该归一化,隐藏层是 ReLU,输出层最好是 Sigmoid。



下面是如何使用 MLP 进行函数逼近的示例:

  1. 导入需要用到的模块:sklearn,该模块可以用来获取数据集,预处理数据,并将其分成训练集和测试集;pandas,可以用来分析数据集;matplotlib 和 seaborn 可以用来可视化:

  1. 加载数据集并创建 Pandas 数据帧来分析数据:

  1. 了解一些关于数据的细节:

下表很好地描述了数据:

  1. 找到输入的不同特征与输出之间的关联:

以下是上述代码的输出:

  1. 从前面的代码中,可以看到三个参数
    RM、PTRATIO 和 LSTAT 在幅度上与输出之间具有大于 0.5 的相关性。选择它们进行训练。将数据集分解为训练数据集和测试数据集。使用
    MinMaxScaler 来规范数据集。

    需要注意的一个重要变化是,由于神经网络使用 Sigmoid 激活函数(Sigmoid 的输出只能在 0~1 之间),所以还必须对目标值 Y 进行归一化:

  1. 定义常量和超参数:

  1. 创建一个单隐藏层的多层感知机模型:

  1. 声明训练数据的占位符并定义损失和优化器:

  1. 执行计算图:

解读分析

在只有一个隐藏层的情况下,该模型在训练数据集上预测房价的平均误差为 0.0071。下图显示了房屋估价与实际价格的关系:

在这里,使用 TensorFlow 操作层(Contrib)来构建神经网络层。这使得工作稍微容易一些,因为避免了分别为每层声明权重和偏置。如果使用像 Keras 这样的 API,工作可以进一步简化。



下面是 Keras 中以 TensorFlow 作为后端的代码:



前面的代码给出了预测值和实际值之间的结果。可以看到,通过去除异常值(一些房屋价格与其他参数无关,比如最右边的点),可以改善结果:

TensorFlow实现多层感知机函数逼近的更多相关文章

  1. TensorFlow多层感知机函数逼近过程详解

    http://c.biancheng.net/view/1924.html Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearni ...

  2. TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)

    Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...

  3. TensorFlow实现多层感知机MINIST分类

    TensorFlow实现多层感知机MINIST分类 TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度.使用梯度自动更新用变量定义的张量.本文将使用 Tenso ...

  4. TensorFlow学习笔记7-深度前馈网络(多层感知机)

    深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...

  5. TensorFlow实现自编码器及多层感知机

    1 自动编码机简介        传统机器学习任务在很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难 ...

  6. Tensorflow 2.0 深度学习实战 —— 详细介绍损失函数、优化器、激活函数、多层感知机的实现原理

    前言 AI 人工智能包含了机器学习与深度学习,在前几篇文章曾经介绍过机器学习的基础知识,包括了监督学习和无监督学习,有兴趣的朋友可以阅读< Python 机器学习实战 >.而深度学习开始只 ...

  7. 『TensorFlow』读书笔记_多层感知机

    多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本 ...

  8. Theano3.4-练习之多层感知机

    来自http://deeplearning.net/tutorial/mlp.html#mlp Multilayer Perceptron note:这部分假设读者已经通读之前的一个练习 Classi ...

  9. 学习笔记TF026:多层感知机

    隐含层,指除输入.输出层外,的中间层.输入.输出层对外可见.隐含层对外不可见.理论上,只要隐含层节点足够多,只有一个隐含层,神经网络可以拟合任意函数.隐含层越多,越容易拟合复杂函数.拟合复杂函数,所需 ...

随机推荐

  1. Webuploader 简单图片上传 支持多图上传

    简介: 通过webuploader 实现简单的图片上传功能,支持多张图上传 官方文档传送门:http://fex.baidu.com/webuploader/getting-started.html# ...

  2. 【JDK8】Java8 LocalDate操作时间和日期的API

    时间项目中的涉及到的时间处理非常多,犹豫SimpleDateFormat的不安全性以及Calendar等类在计算时比较复杂, 往往我们都会使用工具类来封装较多的日期处理函数, 但是JDK8中新增了操作 ...

  3. Android常见App加固厂商脱壳方法的整理

    目录 简述(脱壳前学习的知识.壳的历史.脱壳方法) 第一代壳 第二代壳 第三代壳 第N代壳 简述 Apk文件结构 Dex文件结构 壳史 壳的识别 Apk文件结构 Dex文件结构 壳史 第一代壳 Dex ...

  4. hdu5040 不错的广搜

    题意:       给你一个地图,让你从起点走到终点,然后图上有空地,墙,还有摄像头,摄像头有初始方向,每一秒摄像头都会顺时针旋转90度,每个摄像头有自己的观察范围,它所在的点,和当前它面向的那个点, ...

  5. hdu5025 状态压缩广搜

    题意:       悟空要救唐僧,中途有最多就把钥匙,和最多五条蛇,要求就得唐僧并且拿到所有种类的钥匙(两个1只拿一个就行),拿钥匙i之前必须拿到钥匙i-1,打蛇多花费一秒,问救出唐僧并且拿到所有种类 ...

  6. Redhat中网络启动错误解决办法( Failed to start LSB: Bring up/down networking RTNETLINK answers: File exists)

    关于Redhat系列中网络启动失败的解决办法 报错: Failed to start LSB: Bring up/down networking.             RTNETLINK answ ...

  7. 关于PHP动态的接收传递的GET,POST和COOKIE变量

    0x01 我们知道 PHP 接收的变量最常用的是 GET,POST,COOKIE 这三个变量.GET变量是附在 url 后传输的,而 POST 变量是放在 http 包中传输的,COOKIE 则是浏览 ...

  8. IOS Widget(5):小组件刷新机制

    引言   前面的章节学完已经让我们可以顺利实现一个小组件了,但是小组件里面的数据如何刷新的呢,本节内容将讲解IOS的刷新机制. 大纲 系统如何管理小组件刷新 Timeline刷新机制 Timeline ...

  9. Linux下为Calibre书库打中文目录名与文件名补丁

    本文由来 临近下班突然看到知乎上有篇文章是给Calibre打中文目录与文件名补丁的,想起我之前为啥放弃Calibre的--存进书库里书的名称都变成了拼音!手动找起来或者搜索工具找起来太麻烦了(有时想不 ...

  10. Educational Codeforces Round 92 (Rated for Div. 2)

    A.LCM Problem 题意:最小公倍数LCM(x,y),处于[l,r]之间,并且x,y也处于[l,r]之间,给出l,r找出x,y; 思路:里面最小的最小公倍数就是基于l左端点的,而那个最小公倍数 ...