最近,业务增长的很迅猛,对于我们后台这块也是一个不小的挑战,这次遇到的核心业务接口的性能瓶颈,并不是单独的一个问题导致的,而是几个问题揉在一起:我们解决一个之后,发上线,之后发现还有另一个的性能瓶颈问题。这也是我经验不足,导致没能一下子定位解决;而我又对我们后台整个团队有着固执的自尊,不想通过大量水平扩容这种方式挺过压力高峰,导致线上连续几晚都出现了不同程度的问题,肯定对于我们的业务增长是有影响的。这也是我不成熟和要反思的地方。这系列文章主要记录下我们针对这次业务增长,对于我们后台微服务系统做的通用技术优化,针对业务流程和缓存的优化由于只适用于我们的业务,这里就不再赘述了。本系列会分为如下几篇:

  1. 改进客户端负载均衡算法
  2. 开发日志输出异常堆栈的过滤插件
  3. 针对 x86 云环境改进异步日志等待策略
  4. 增加对于同步微服务的 HTTP 请求等待队列的监控以及云上部署,需要小心达到实例网络流量上限导致的请求响应缓慢
  5. 针对系统关键业务增加必要的侵入式监控

增加对于同步微服务的 HTTP 请求等待队列的监控

同步微服务对于请求超时存在的问题

相对于基于 spring-webflux 的异步微服务,基于 spring-webmvc 的同步微服务没有很好的处理客户端有请求超时配置的情况。当客户端请求超时时,客户端会直接返回超时异常,但是调用的服务端任务,在基于 spring-webmvc 的同步微服务并没有被取消,基于 spring-webflux 的异步微服务是会被取消的目前,还没有很好的办法在同步环境中可以取消这些已经超时的任务

我们的基于 spring-webmvc 的同步微服务,HTTP 容器使用的是 Undertow。在 spring-boot 环境下,我们可以配置处理 HTTP 请求的线程池大小:

server:
undertow:
# 以下的配置会影响buffer,这些buffer会用于服务器连接的IO操作
# 如果每次需要 ByteBuffer 的时候都去申请,对于堆内存的 ByteBuffer 需要走 JVM 内存分配流程(TLAB -> 堆),对于直接内存则需要走系统调用,这样效率是很低下的。
# 所以,一般都会引入内存池。在这里就是 `BufferPool`。
# 目前,UnderTow 中只有一种 `DefaultByteBufferPool`,其他的实现目前没有用。
# 这个 DefaultByteBufferPool 相对于 netty 的 ByteBufArena 来说,非常简单,类似于 JVM TLAB 的机制
# 对于 bufferSize,最好和你系统的 TCP Socket Buffer 配置一样
# `/proc/sys/net/ipv4/tcp_rmem` (对于读取)
# `/proc/sys/net/ipv4/tcp_wmem` (对于写入)
# 在内存大于 128 MB 时,bufferSize 为 16 KB 减去 20 字节,这 20 字节用于协议头
buffer-size: 16364
# 是否分配的直接内存(NIO直接分配的堆外内存),这里开启,所以java启动参数需要配置下直接内存大小,减少不必要的GC
# 在内存大于 128 MB 时,默认就是使用直接内存的
directBuffers: true
threads:
# 设置IO线程数, 它主要执行非阻塞的任务,它们会负责多个连接, 默认设置每个CPU核心一个读线程和一个写线程
io: 4
# 阻塞任务线程池, 当执行类似servlet请求阻塞IO操作, undertow会从这个线程池中取得线程
# 它的值设置取决于系统线程执行任务的阻塞系数,默认值是IO线程数*8
worker: 128

其背后的线程池,是 jboss 的线程池:org.jboss.threads.EnhancedQueueExecutor,spring-boot 目前不能通过配置修改这个线程池的队列大小,默认队列大小是 Integer.MAX

我们需要监控这个线程池的队列大小,并针对这个指标做一些操作:

  • 当这个任务持续增多的时候,就代表这时候请求处理跟不上请求到来的速率了,需要报警。
  • 当累积到一定数量时,需要将这个实例暂时从注册中心取下,并扩容。
  • 待这个队列消费完之后,重新上线。
  • 当超过一定时间还是没有消费完的话,将这个实例重启。

添加同步微服务 HTTP 请求等待队列监控

幸运的是,org.jboss.threads.EnhancedQueueExecutor 本身通过 JMX 暴露了 HTTP servlet 请求的线程池的各项指标:

我们的项目中,使用两种监控:

  • prometheus + grafana 微服务指标监控,这个主要用于报警以及快速定位问题根源
  • JFR 监控,这个主要用于详细定位单实例问题

对于 HTTP 请求等待队列监控,我们应该通过 prometheus 接口向 grafana 暴露,采集指标并完善响应操作。

暴露 prometheus 接口指标的代码是:

@Log4j2
@Configuration(proxyBeanMethods = false)
//需要在引入了 prometheus 并且 actuator 暴露了 prometheus 端口的情况下才加载
@ConditionalOnEnabledMetricsExport("prometheus")
public class UndertowXNIOConfiguration {
@Autowired
private ObjectProvider<PrometheusMeterRegistry> meterRegistry;
//只初始化一次
private volatile boolean isInitialized = false; //需要在 ApplicationContext 刷新之后进行注册
//在加载 ApplicationContext 之前,日志配置就已经初始化好了
//但是 prometheus 的相关 Bean 加载比较复杂,并且随着版本更迭改动比较多,所以就直接偷懒,在整个 ApplicationContext 刷新之后再注册
// ApplicationContext 可能 refresh 多次,例如调用 /actuator/refresh,还有就是多 ApplicationContext 的场景
// 这里为了简单,通过一个简单的 isInitialized 判断是否是第一次初始化,保证只初始化一次
@EventListener(ContextRefreshedEvent.class)
public synchronized void init() {
if (!isInitialized) {
Gauge.builder("http_servlet_queue_size", () ->
{
try {
return (Integer) ManagementFactory.getPlatformMBeanServer()
.getAttribute(new ObjectName("org.xnio:type=Xnio,provider=\"nio\",worker=\"XNIO-2\""), "WorkerQueueSize");
} catch (Exception e) {
log.error("get http_servlet_queue_size error", e);
}
return -1;
}).register(meterRegistry.getIfAvailable());
isInitialized = true;
}
}
}

之后,调用 /actuator/prometheus 我们就能看到对应的指标:

# HELP http_servlet_queue_size
# TYPE http_servlet_queue_size gauge
http_servlet_queue_size 0.0

当发生队列堆积时,我们能快速的报警,并且直观地从 grafana 监控上发现:

对于公有云部署,关注网络限制的监控

现在的公有云,都会针对物理机资源进行虚拟化,对于网络网卡资源,也是会虚拟化的。以 AWS 为例,其网络资源的虚拟化实现即 ENA(Elastic Network Adapter)。它会对以下几个指标进行监控并限制:

  • 带宽:每个虚拟机实例(AWS 中为每个 EC2 实例),都具有流量出的最大带宽以及流量入的最大带宽。这个统计使用一种网络 I/O 积分机制,根据平均带宽使用率分配网络带宽,最后的效果是允许短时间内超过额定带宽,但是不能持续超过。
  • 每秒数据包 (PPS,Packet Per Second) 个数:每个虚拟机实例(AWS 中为每个 EC2 实例)都限制 PPS 大小
  • 连接数:建立连接的个数是有限的
  • 链接本地服务访问流量:一般在公有云,每个虚拟机实例 (AWS 中为每个 EC2 实例)访问 DNS,元数据服务器等,都会限制流量

同时,成熟的公有云,这些指标一般都会对用户提供展示分析界面,例如 AWS 的 CloudWatch 中,就提供了以下几个指标的监控:

在业务流量突增时,我们通过 JFR 发现访问 Redis 有性能瓶颈,但是 Redis 本身的监控显示他并没有遇到性能瓶颈。这时候就需要查看是否因为网络流量限制导致其除了问题,在我们出问题的时间段,我们发现 NetworkBandwidthOutAllowanceExceeded 事件显著提高了很多:

对于这种问题,就得需要考虑垂直扩容(提升实例配置)与水平扩容(多实例负载均衡)了,或者减少网络流量(增加压缩等)

微信搜索“我的编程喵”关注公众号,每日一刷,轻松提升技术,斩获各种offer

近期业务大量突增微服务性能优化总结-4.增加对于同步微服务的 HTTP 请求等待队列的监控的更多相关文章

  1. 近期业务大量突增微服务性能优化总结-3.针对 x86 云环境改进异步日志等待策略

    最近,业务增长的很迅猛,对于我们后台这块也是一个不小的挑战,这次遇到的核心业务接口的性能瓶颈,并不是单独的一个问题导致的,而是几个问题揉在一起:我们解决一个之后,发上线,之后发现还有另一个的性能瓶颈问 ...

  2. 微服务性能优化之thrift改造

    在我当前所做的web项目中,采用前后端分离模式前端通过Django 提供restful接口,后端采用微服务架构,微服务之间的调用采用jsonrpc,由于微服务之间的调用很频繁,导致前端得到的响应很慢, ...

  3. 转载 近期微博吐槽言论存档,涉及“性能优化”、C++陋习等

    http://blog.csdn.net/solstice/article/details/9923615 近期微吐槽博言论存档,涉及“性能优化”.C++陋习等 写C++程序的几个陋习:class 名 ...

  4. 记我的一次 Java 服务性能优化

    背景 前段时间我们的服务遇到了性能瓶颈,由于前期需求太急没有注意这方面的优化,到了要还技术债的时候就非常痛苦了. 在很低的 QPS 压力下服务器 load 就能达到 10-20,CPU 使用率 60% ...

  5. Nginx优化之服务性能优化

    优化Nginx服务的worker进程个数 修改nginx主配置文件 worker_processes 1; #指定了Nginx要开启的进程数,结尾数字就是进程个数 Nginx有Master进程和wor ...

  6. 近期微博吐槽言论存档,涉及“性能优化”、C++陋习等

    写C++程序的几个陋习:class 名以大写 C 开头,例如 CDate:成员变量以 m_ 开头:变量采用匈牙利命名法:不知道何时禁用 copy-ctor/assign operator.前三个可能是 ...

  7. U3D开发性能优化笔记(待增加版本.x)

    http://blog.csdn.net/kaitiren/article/details/45071997 此总结由自己经验及网上收集整理优化内容 包括: .代码方面: .函数使用方面: .ui注意 ...

  8. HBase实践案例:知乎 AI 用户模型服务性能优化实践

    用户模型简介 知乎 AI 用户模型服务于知乎两亿多用户,主要为首页.推荐.广告.知识服务.想法.关注页等业务场景提供数据和服务, 例如首页个性化 Feed 的召回和排序.相关回答等用到的用户长期兴趣特 ...

  9. mysql服务性能优化—my.cnf配置说明详解

    MYSQL服务器my.cnf配置文档详解硬件:内存16G [client]port = 3306socket = /data/3306/mysql.sock [mysql]no-auto-rehash ...

随机推荐

  1. C++ 找零钱方法数

    * 动态规划法 #include "stdafx.h" #include <iostream> #include <vector> using std::v ...

  2. js 模板方法模式

    * 分离出共同点 function Beverage() {} Beverage.prototype.boilWater = function() { console.log("把水煮沸&q ...

  3. str.strip(chars)

    strip会去除给定字符串的指定字符,指定字符可以是一个或多个,去除从左右分别进行,没有则忽略,如果需要去除某个中间的字符,必须先去除外围的字符 看几个例子,以s为例,故意设置为非对称结构, s = ...

  4. Microfacet模型采样下的brdf

    本文前言 在学习图形学(games101 from bilibili)的时候,也遇到了像这样的问题,Cook-Torrance模型无法实现粗糙度为0时,物体微表面呈现绝对镜面的效果(呈现出一面镜子), ...

  5. Mysql集群搭建(多实例、主从)

    1 MySQL多实例 一 .MySQL多实例介绍 1.什么是MySQL多实例 MySQL多实例就是在一台机器上开启多个不同的服务端口(如:3306,3307,3308),运行多个MySQL服务进程,通 ...

  6. Redis5种常用数据类型的使用以及内部编码

    String 字符串类型是redis的最基本类型,首先无论值是什么数据类型,其键都是字符串,且其他数据类型的数据结构都是在字符串的基础上搭建的,相信读者能够体会到字符串在redis的地位是有多么的重要 ...

  7. break和continue关键字

    什么是break break 跳出最里层的循环,并且继续执行该循环下面的语句 就是强制退出循环 示例 package struct; public class ForDemo05 { public s ...

  8. 高中最后一刻&大学第一课&为人师的责任

    文章不是技术文,只是分享一些感想,作为一只程序猿,不说好好敲代码,跑出来思考人生,不是合格的程序猿,罪过罪过,自我反思3秒钟,我们继续,毕竟程序猿的人生不只是Coding,也希望自己这点感想被更多刚入 ...

  9. PLSQL安装,PLSQL汉化,激活

    一)准备工作 1.点击下载PLSQL:https://www.allroundautomations.com/registered-plsqldev/.本次安装的是12.0.7,安装版本为64位 2. ...

  10. 安装 webstorm--->vue

    一.先去官网下载webstorm     https://www.jetbrains.com/ 不论是Mac的还是win得都有相应的版本, 二.再去官网下载git     https://git-sc ...