给出组件的数量n,给出记录的数量m(n就是变元数量,m是方程数量)。每一个记录代表一个方程,求每个组件的生产天数。

高斯消元即可

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <map>
#include <string>
using namespace std; const int MOD = 7;
const int MAXN = 310;
int a[MAXN][MAXN], x[MAXN]; void debug(int n, int m)
{
for(int i=0; i<n; i++)
{
for(int j=0; j<m; j++)
printf("%d ", a[i][j]);
printf(" %d\n", a[i][m]);
}
puts("**************************************************************");
} int gcd(int a,int b) //递归算法
{
return b ? gcd(b, a%b) : a;
} int lcm(int a, int b)
{
return a*b/gcd(a,b);
} int Guass(int equ,int var)
{
// debug(equ, var);
int row,col;
row=col=0;
while(row<equ && col<var)
{
//列非零主
int r=row;
for(int i=row; i<equ; i++)
if(a[i][col]!=0)
{
r=i;
break;
}
if(r!=row)
{
for(int j=col; j<var+1; j++)
swap(a[row][j],a[r][j]);
}
if(a[row][col]==0)//说明有自由变元
{
col++;
continue;
}
//消元
for(int i=row+1; i<equ; i++)
{
if(a[i][col]==0) continue;
int l = lcm(a[row][col],a[i][col]);
int ta = l/a[row][col];
int tb = l/a[i][col];
for(int j=col; j<var+1; j++)
a[i][j] = ((tb*a[i][j] - ta*a[row][j]) % MOD + MOD) %MOD;
}
// debug(equ, var);
row++;
col++;
}
for(int i=row; i<equ; i++)
if(a[i][var]!=0) return -1;
if(row < var) return 1;
for(int i=row-1; i>=0; i--)
{
int tmp = a[i][var];
for(int j=i+1; j<var; j++)
tmp = ((tmp - x[j]*a[i][j])%MOD + MOD)%MOD;
while(tmp%a[i][i]) tmp += MOD;
x[i] = tmp/a[i][i]%MOD;
}
return 0;
} int main()
{
// freopen("in.txt", "r", stdin);
int n,m;
map<string, int>mp;
mp["MON"] = 1, mp["TUE"] = 2, mp["WED"] = 3;
mp["THU"] = 4, mp["FRI"] = 5, mp["SAT"] = 6, mp["SUN"] = 7;
while(~scanf("%d%d", &n, &m)) //n个变元,m个方程
{
memset(a, 0, sizeof(a));
if(n == 0 && m == 0) break;
for(int i=0; i<m; i++)
{
int k;
char s1[5], s2[5];
scanf("%d", &k);
scanf("%s%s", s1, s2);
a[i][n] = (mp[s2]-mp[s1]+1+MOD)%MOD;
while(k--)
{
int t;
scanf("%d", &t);
a[i][t-1]++;
a[i][t-1] %= MOD;
}
}
int res = Guass(m, n);
if(res == -1)
puts("Inconsistent data.");
else if(res == 1)
puts("Multiple solutions.");
else
{
for(int i=0; i<n; i++)
if(x[i]<3) x[i] += MOD;
for(int i=0; i<n; i++)
printf("%d%c", x[i], i==n-1?'\n':' ');
}
}
return 0;
}

POJ 2947 2947 Widget Factory 高斯消元的更多相关文章

  1. Poj 2947 widget factory (高斯消元解同模方程)

    题目连接: http://poj.org/problem?id=2947 题目大意: 有n种类型的零件,m个工人,每个零件的加工时间是[3,9],每个工人在一个特定的时间段内可以生产k个零件(可以相同 ...

  2. POJ 1681---Painter's Problem(高斯消元)

    POJ   1681---Painter's Problem(高斯消元) Description There is a square wall which is made of n*n small s ...

  3. POJ 2947-Widget Factory(高斯消元解同余方程式)

    题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的 ...

  4. POJ2947Widget Factory(高斯消元解同模方程)

    http://poj.org/problem?id=2947 题目大意:有n 种装饰物,m 个已知条件,每个已知条件的描述如下:p start enda1,a2......ap (1<=ai&l ...

  5. POJ 1830 开关问题(高斯消元)题解

    思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...

  6. POJ 1222【异或高斯消元|二进制状态枚举】

    题目链接:[http://poj.org/problem?id=1222] 题意:Light Out,给出一个5 * 6的0,1矩阵,0表示灯熄灭,反之为灯亮.输出一种方案,使得所有的等都被熄灭. 题 ...

  7. POJ 1830 开关问题(高斯消元求解的情况)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 8714   Accepted: 3424 Description ...

  8. POJ 1753 Flip Game(高斯消元+状压枚举)

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45691   Accepted: 19590 Descr ...

  9. POJ 3185 The Water Bowls (高斯消元)

    题目链接 题意:翻译过来就是20个0或1的开关,每次可以改变相邻三个的状态,问最小改变多少次使得所有开关都置为0,题目保证此题有解. 题解:因为一定有解,所以我们可以正序逆序遍历两次求出较小值即可.当 ...

随机推荐

  1. 【CentOS_7】一行shell实现自动清理过期日志

    昨日web测试环境登录白屏,慌忙登上机器查看,半天没找到问题. 不知哪根筋不对,df -h 一看 , /dev/sda1 已经100%. 立马 du -sh *,发现log日志有点大. 手工清理后,业 ...

  2. 搭建LAMP环境部署Nextcloud私人网盘

    搭建 LAMP 环境部署 Nextcloud 私人网盘 前言 Nextcloudd 是一个开源的.基于本地的文件共享和协作平台,它允许您保存文件并通过多个设备(如PC.智能手机和平板电脑)访问它们. ...

  3. 自动做bond的脚本

    #!/bin/bash # 先备份原来的网卡配置文件 find /etc/sysconfig/network-scripts/ -type f -name "ifcfg*"|xar ...

  4. linux 进程信号集合 sigset_t -(转自linengeir的专栏)

    sigset_t 号集及信号集操作函数:信号集被定义为一种数据类型: typedef struct { unsigned long sig[_NSIG_WORDS]: } sigset_t 信号集用来 ...

  5. INFJ名言

    财富是由什么构成的? 按世俗的观点,就是占有金钱和财宝. 但如果我们用除金钱之外的其他方式来衡量财富, 那么许多在物质上匮乏的人在精神上却是富有的, 许多在物质上富有的人在精神上却是匮乏的. The ...

  6. Centos 重置root密码

    # cat /etc/system-release                         #查看版本 开机后在内核grub.2上敲击 e 在linux16 行(倒数第二行)末加入 " ...

  7. 加载动画效果 HTML+ CSS

    加载动画效果 写在前面 在无限的时间的河流里,人生仅仅是微小又微小的波浪.--郭小川 实现效果 实现原理 通过2个伪元素来设置3条颜色边框 通过定位将3个圆弧边框层叠再一起,再通过旋转实现一个圆的效果 ...

  8. Python小白的数学建模课-A1.2021年数维杯C题(运动会优化比赛模式探索)探讨

    Python小白的数学建模课 A1-2021年数维杯C题(运动会优化比赛模式探索)探讨. 运动会优化比赛模式问题,是公平分配问题 『Python小白的数学建模课 @ Youcans』带你从数模小白成为 ...

  9. 微信小程序setdata修改数组或对象

    1.this.setdata修改数组的固定一项的值 changeItemInArr: function() { this.setData({ 'arr[0].text':'changed data' ...

  10. python工业互联网应用实战17—前后端分离模式之django template vs jquery3

    上一章节我们完成了"CRUD"的后面3个功能点,新增由于改动较大我们专门增加本章来阐述,主要是完成技术栈切换后,会发现模板的代码判断过多,逻辑过于复杂.对未来存在的扩展和维护友好性 ...