一 __del__ 魔术方法(析构方法)

1.1 介绍

  • 触发时机:当对象被内存回收的时候自动触发[1.页面执行完毕回收所有变量 2.所有对象被del的时候]
  • 功能:对象使用完毕后资源回收
  • 参数:一个self接受对象
  • 返回值:无

1.2 页面执行完毕回收所有变量

class Plane():
def __init__(self,name):
self.name = name
def fly(self):
print ("我的飞机是{}飞的很快".format(self.name))
def __del__(self):
print ("析构被触发")
obj = Plane("高超音速")
obj.fly()

执行

[root@node10 python]# python3 test.py
我的飞机是高超音速飞的很快
析构被触发

1.3 所有对象被del的时候

删除对象

class Plane():
def __init__(self,name):
self.name = name
def fly(self):
print ("我的飞机是{}飞的很快".format(self.name))
def __del__(self):
print ("析构被触发")
obj = Plane("高超音速")
print ("<=======================start del=========================>")
del obj
print ("<=======================end del=========================>")

执行

[root@node10 python]# python3 test.py
<=======================start del=========================>
析构被触发
<=======================end del=========================>

当只删除一个对象,还有剩余对象,也不会触发

class Plane():
def __init__(self,name):
self.name = name
def fly(self):
print ("我的飞机是{}飞的很快".format(self.name))
def __del__(self):
print ("析构被触发")
obj = Plane("高超音速")
obj2 = obj
print ("<=======================start del=========================>")
del obj
print ("<=======================end del=========================>")

执行,是在页面执行完毕是触发

[root@node10 python]# python3 test.py
<=======================start del=========================>
<=======================end del=========================>
析构被触发

1.4 删除所有对象

  • 两个不同的变量指向同一个对象,只有把这两个变量都删除了,
  • 这个对象没有变量引用了,才会真正的删除对象.
class Plane():
def __init__(self,name):
self.name = name
def fly(self):
print ("我的飞机是{}飞的很快".format(self.name))
def __del__(self):
print ("析构被触发")
obj = Plane("高超音速")
obj2 = obj
print ("<=======================start del=========================>")
del obj
del obj2
print ("<=======================end del=========================>")

执行

[root@node10 python]# python3 test.py
<=======================start del=========================>
析构被触发
<=======================end del=========================>

1.5 模拟文件读的操作

fp = open("ceshi.txt","r",encoding="utf-8")
res = fp.read()
print (res)

执行

[root@node10 python]# cat ceshi.txt
君临天下
[root@node10 python]# python3 test.py
君临天下

有这个文件,就创建一个对象

fp = open("ceshi.txt","r",encoding="utf-8")
res = fp.read()
fp.close()
print (res)
import os
class ReadFile():
def __new__(cls,name):
if os.path.exists(name):
return object.__new__(cls)
return print("没有这个文件")
obj=ReadFile("ceshi.txt")
print (obj)

执行

[root@node10 python]# python3 test.py
君临天下 <__main__.ReadFile object at 0x7f5c2271b518>

如果不存在

fp = open("ceshi.txt","r",encoding="utf-8")
res = fp.read()
fp.close()
print (res)
import os
class ReadFile():
def __new__(cls,name):
if os.path.exists(name):
return object.__new__(cls)
return print("没有这个文件")
obj=ReadFile("ceshii11.txt")
print (obj)

执行

[root@node10 python]# python3 test.py
君临天下 没有这个文件
None

1.6 对对象进行初始化

import os
class ReadFile():
def __new__(cls,name):
if os.path.exists(name):
return object.__new__(cls)
return print("没有这个文件")
def __init__(self,name):
self.fp = open("ceshi.txt","r",encoding="utf-8")
def readcontent(self):
res = self.fp.read()
return (res)
def __del__(self):
self.fp.close()
obj=ReadFile("ceshi.txt")
print (obj)
res = obj.readcontent()
print (res)

执行

[root@node10 python]# python3 test.py
<__main__.ReadFile object at 0x7f601b50e470>
君临天下

如果文件不存在

import os
class ReadFile():
      #创建对象
def __new__(cls,name):
if os.path.exists(name):
return object.__new__(cls)
return print("没有这个文件")
def __init__(self,name):
          #把文件对象赋值给该对象的fp成员属性
self.fp = open("ceshi.txt","r",encoding="utf-8")
     #读取文件内容
def readcontent(self):
res = self.fp.read()
return (res)
     #关闭文件
def __del__(self):
self.fp.close()
obj=ReadFile("ceshi111.txt")
print (obj)
res = obj.readcontent()
print (res)

执行

二 __call__ 魔术方法

2.1 介绍

  • 触发时机:把对象当作函数调用的时候自动触发
  • 功能: 模拟函数化操作
  • 参数: 参数不固定,至少一个self参数
  • 返回值: 看需求

2.2 基本用法

把对象当成函数进行调用,自动触发__call__

class MyClass():
def __call__(self):
print ("call方法被调用")
obj = MyClass()
obj()

执行

[root@node10 python]# python3 test.py
call方法被调用

如果没有__call__调用就会出错

class MyClass():
# def __call__(self):
# print ("call方法被调用")
pass
obj = MyClass()
obj()

执行报错

2.3 模拟购物过程

class Shopping():
def __init__(self,who):
self.who = who
def step1(self):
print ("{}出门".format(self.who))
def step2(self):
print ("{}开车去商场".format(self.who))
def step3(self):
print ("{}买完东西回家".format(self.who))
obj = Shopping("女朋友")
obj.step1()
obj.step2()
obj.step3()

执行

[root@node10 python]# python3 test.py
女朋友出门
女朋友开车去商场
女朋友买完东西回家

2.4 使用__call__方法

class Shopping():
def __init__(self,who):
self.who = who
def __call__(self):
self.step1()
self.step2()
self.step3()
def step1(self):
print ("{}出门".format(self.who))
def step2(self):
print ("{}开车去商场".format(self.who))
def step3(self):
print ("{}买完东西回家".format(self.who))
obj = Shopping("女朋友")
obj()

执行

[root@node10 python]# python3 test.py
女朋友出门
女朋友开车去商场
女朋友买完东西回家

2.5 优化1

class Shopping():
def __init__(self,who):
self.who = who
def __call__(self,shop):
self.shop = shop
print ("我的{}要去{}".format(self.who,self.shop))
self.step1()
self.step2()
self.step3()
def step1(self):
print ("{}出门".format(self.who))
def step2(self):
print ("{}开车去商场".format(self.who))
def step3(self):
print ("{}买完东西回家".format(self.who))
obj = Shopping("女朋友")
obj("购物")

执行

[root@node10 python]# python3 test.py
我的女朋友要去购物
女朋友出门
女朋友开车去商场
女朋友买完东西回家

2.6 不使用初始化

class Shopping():
def __call__(self,who):
self.who = who
print ("我的{}要去购物".format(self.who))
self.step1()
self.step2()
self.step3()
def step1(self):
print ("{}出门".format(self.who))
def step2(self):
print ("{}开车去商场".format(self.who))
def step3(self):
print ("{}买完东西回家".format(self.who))
obj = Shopping()
obj("女朋友")

执行

[root@node10 python]# python3 test.py
我的女朋友要去购物
女朋友出门
女朋友开车去商场
女朋友买完东西回家

2.7 优化2

class Shopping():
def __call__(self,who,shop):
self.who = who
self.shop = shop
print ("我的{}要去{}".format(self.who,self.shop))
self.step1()
self.step2()
self.step3()
def step1(self):
print ("{}出门".format(self.who))
def step2(self):
print ("{}开车去商场".format(self.who))
def step3(self):
print ("{}买完东西回家".format(self.who))
obj = Shopping()
obj("女朋友","购物")

执行

[root@node10 python]# python3 test.py
我的女朋友要去购物
女朋友出门
女朋友开车去商场
女朋友买完东西回家

2.8 模拟内置int强转方法 myint

import math
class MyInt():
def __call__(self,num):
if isinstance(num,bool):
if num == True:
return 1
else:
return 0
elif isinstance(num,int):
return num
elif isinstance(num,float):
if num < 0:
return math.ceil(num)
else:
return math.floor(num)
myint = MyInt()
print (myint(True))
print (myint(False)) print ("<int type>")
print (myint(55)) print ("<float type>")
print (myint(6.9))
print (myint(-6.9))

执行

[root@node10 python]# python3 test.py
1
0
<int type>
55
<float type>
6
-6

判断字符串类型

import math
class MyInt():
# sign 代表符号,默认正值
def myfunc(self,strvar,sign = 1):
isnull = strvar.lstrip("0")
# 判断是否处理完的字符串是不是空的,如果是空的,这个串是"0000.."是因为eval("")会出现错误
if isnull == "":
return 0
res = eval(strvar) * sign
return res
def __call__(self,num):
if isinstance(num,bool):
if num == True:
return 1
else:
return 0
elif isinstance(num,int):
return num
elif isinstance(num,float):
if num < 0:
return math.ceil(num)
else:
return math.floor(num)
elif isinstance(num,str):
if (num[0] == "+" or num[0] == "-") and num[1:].isdecimal():
if num[0] == "+":
sign = 1
else:
sign = -1
return self.myfunc(num[1:],sign)
elif num.isdecimal():
return self.myfunc(num)
else: return "对不起,处理不了这个数据类型"
myint = MyInt()
print (myint(True))
print (myint(False)) print ("<int type>")
print (myint(55)) print ("<float type>")
print (myint(6.9))
print (myint(-6.9))
print ("<str type>")
print(myint("11122233"),type(myint("11122233")))
# print(myint("00001223"))
print(myint("-11122233"),type(myint("-11122233")))

print(myint([1,2,3,4]))

执行

[root@node10 python]# python3 test.py
1
0
<int type>
55
<float type>
6
-6
<str type>
11122233 <class 'int'>
-11122233 <class 'int'>
对不起,处理不了这个数据类型

使用eval可以转化为数字,但是在特殊情况下并不能执行

但是空值,带-号的会

[root@node10 python]# cat test.py
import math
class MyInt():
# sign 代表符号,默认正值
def myfunc(self,strvar,sign = 1):
isnull = strvar.lstrip("0")
# 判断是否处理完的字符串是不是空的,如果是空的,这个串是"0000.."
if isnull == "":
return 0
res = eval(strvar) * sign
return res
def __call__(self,num):
if isinstance(num,bool):
if num == True:
return 1
else:
return 0
elif isinstance(num,int):
return num
elif isinstance(num,float):
if num < 0:
return math.ceil(num)
else:
return math.floor(num)
elif isinstance(num,str):
if num.isdecimal():
                   #或者使用self.myfunc(num)
                   res = eval(num)
return res
else: return "对不起,处理不了这个数据类型"
myint = MyInt()
print (myint(True))
print (myint(False)) print ("<int type>")
print (myint(55)) print ("<float type>")
print (myint(6.9))
print (myint(-6.9))
print ("<str type>")
print (myint("1234"))
print (myint("-234"))
print (myint("00000234"))

执行

2.9 使用__call__方法实现装饰器

普通方式

class Show():
def showtime(func):
def newfunc():
print ("准备演出")
func()
print ("退出演出")
return newfunc
@Show.showtime
def func():
print ("张靓颖正在鸟巢演出")
func()

执行

[root@node10 python]# python3 test.py
准备演出
张靓颖正在鸟巢演出
退出演出

使用__call__

[root@node10 python]# cat test.py
class Show():
def __call__(self,func):
return self.showtime(func)
def showtime(self,func):
def newfunc():
print ("准备演出")
func()
print ("退出演出")
return newfunc
@Show() #@obj =>func =  obj(func) => 返回的新函数替换旧函数
def func():
print ("张靓颖正在鸟巢演出")
func()

执行

[root@node10 python]# python3 test.py
准备演出
张靓颖正在鸟巢演出
退出演出

@有两个作用

(1)自动把装饰器下面的函数当成参数进行传递
(2)把返回的新函数,自动赋值,用来替换旧函数

执行过程

Show()返回一个obj对象

@obj发动技能,把参数传递给obj

obj(func)返回newfunc

@发动技能,把新函数替换旧函数

func = newfunc,则func()就等价于newfunc()

033.Python的__del__析构方法he__call__方法的更多相关文章

  1. python - class内置方法 doc/module/del(析构方法)/cal 方法

    __doc__ # __doc__ #摘要信息 #这个属性不会继承给子类 class Test(): """这是摘要信息""" pass x ...

  2. 【python】-- 类的装饰器方法、特殊成员方法

    装饰器方法 类的另外的特性,装饰器方法:静态方法(staticmethod).类方法(classmethod).属性方法(property) 一.静态方法 在方法名前加上@staticmethod装饰 ...

  3. 【python学习笔记】9.魔法方法、属性和迭代器

    [python学习笔记]9.魔法方法.属性和迭代器 魔法方法:xx, 收尾各有两个下划线的方法 __init__(self): 构造方法,创建对象时候自动执行,可以为其增加参数, 父类构造方法不会被自 ...

  4. python面向对象 : 反射和内置方法

    一. 反射 1. isinstance()和issubclass() isinstance( 对象名, 类名) : 判断对象所属关系,包括父类  (注:type(对象名) is 类名 : 判断对象所属 ...

  5. __del__,item系列 ,hash方法,__eq__,

    # 构造方法 申请一个空间# 析构方法 释放一个空间 # 某个对象借用了操作系统的资源,还要通过析构方法归还回去:文件资源 网络资源 # 垃圾回收机制 class A: def __del__(sel ...

  6. [ python ] 类中的一些特殊方法

    item系列 __getitem__(self, item) 对象通过 object[key] 触发 __setitem__(self, key, value) 对象通过 object[key] = ...

  7. Python面向对象之常用的特殊方法(5)

    Python面向对象里面有很多特殊方法,例如__init__(构造方法),__del__(析构方法),这些方法对于面向对象编程非常重要,下面列出一些常用的特殊方法 (1)__call__ class ...

  8. Python构造器及析构器:__init__与__new__及__del__

    __init__与__new__这两个魔法方法组成了Python类对象的构造器,在Python类实例化时,其实最先调用的不是__init__而是__new__.__new__是负责实例化对象的,而__ ...

  9. Python面向对象之反射,双下方法

    一. 反射 反射的概念是由Smith在1982年首次提出的,主要是指程序可以访问.检测和修改它本身状态或行为的一种能力(自省).这一概念的提出很快引发了计算机科学领域关于应用反射性的研究.它首先被程序 ...

随机推荐

  1. Class类文件结构--访问标志

    访问标志的位置:在常量池结束之后的两个字节(16位)表示访问标志access_flags. 访问标志的作用:用于标识类或者接口层次的访问信息:比如该Class是类还是接口,是否为public类型.是否 ...

  2. 【ProLog - 3.0 进阶:递归】

    [ProLog中的递归] 如果递归中的一个或多个规则引用谓词本身,则对该谓词使用"递归"定义 在使用时,这往往像一条食物链或者族谱的构成(A的爸爸的爸爸,即A的爷爷,是A的长辈) ...

  3. c# 输出一个数组

    关于C#输出一个数组最普遍的方法就是用for 循环语句写 如: int[] a = new int[10];for (int i = 0; i < a.Length; i++) { a[i] = ...

  4. Java【线程池、Lambda表达式】

    见pdf 等待唤醒机制 wait和notify 第二章 线程池 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低 系统的效率,因为频繁创建线程和销毁 ...

  5. Android平台OpenGL ES/Assimp/OpenCV/GLM集成说明

    Android平台OpenGL ES/Assimp/OpenCV/GLM集成说明 本文代码见: https://github.com/jiangxincode/OpenGLDemo 集成Assimp ...

  6. 1053 Path of Equal Weight

    Given a non-empty tree with root R, and with weight W​i​​ assigned to each tree node T​i​​. The weig ...

  7. Spring Boot的自动配置原理及启动流程源码分析

    概述 Spring Boot 应用目前应该是 Java 中用得最多的框架了吧.其中 Spring Boot 最具特点之一就是自动配置,基于Spring Boot 的自动配置,我们可以很快集成某个模块, ...

  8. dedecms后台一些时间等验证方法(plus/diy.php)

    <?php if(trim(@$_POST['name'])==''){ $err=2; } if(trim(@$_POST['tel'])==''){ $err=1; }else{ @$_PO ...

  9. 病毒木马查杀实战第016篇:U盘病毒之逆向分析

    比对脱壳前后的程序 我们这次所要研究的是经过上次的脱壳操作之后,所获取的无壳病毒样本.其实我们这里可以先进行一下对比,看看有壳与无壳的反汇编代码的区别.首先用IDA Pro载入原始病毒样本: 图1 可 ...

  10. UVA10881蚂蚁

    题意:      在一个木棍上有只小蚂蚁,他们的移动速度都是1,移动的时候如果和别的蚂蚁碰面,那么碰面的这两只小蚂蚁会马上掉头继续走,给你每只蚂蚁的初始距离木棒左端点的距离和方向,以及木棍长度,问你t ...