分治FFT小记🐤
分治FFT:在 $O(n \log^2 n)$ 的时间内求出类似于 $f_i=\sum\limits_{j=0}^{i-1}g(i-j)f(j)$ 之类的递推式
思想:同 CDQ 分治的思想,先分成左半边和右半边,先处理左半边,然后计算左半边对右半边的影响,最后处理右半边。
注意事项:
1. 不是所有这样的式子都可以用多项式求逆等解决,很多还是要用分治FFT的
2. 式子末尾带的常数需要一开始在分治前就设好
3. 千万不要每次都做长度为 $n$ 的卷积(动动脑子),看看下面的公式:$f'(i)=\sum\limits_{j=l}^{mid}f(j)g(i-j)$
就是 $f$ 的 $[l,mid]$ 项与 $g$ 的 $[1,r]$ 项做卷积(注意 $i$ 的范围为 $[mid+1,r]$),于是将 $f$ 往下平移 $l$,$g$ 往下平移 $1$,做一个长度为 $r-l-1$ 的卷积(但是代码中写 FFT 时要写 $r-l$),然后回移 $l+1$ 位即可!
4. 如果 $g(i-j)$ 前还带有只与 $i$ 有关的式子,加的时候处理一下即可。
分治FFT小记🐤的更多相关文章
- BNUOJ 51279[组队活动 Large](cdq分治+FFT)
传送门 大意:ACM校队一共有n名队员,从1到n标号,现在n名队员要组成若干支队伍,每支队伍至多有m名队员,求一共有多少种不同的组队方案.两个组队方案被视为不同的,当且仅当存在至少一名队员在两种方案中 ...
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 分治FFT的三种含义
分治FFT是几个算法的统称.它们之间并无关联. 分治多项式乘法 问题如求\(\prod_{i=1}^na_ix+b\). 若挨个乘复杂度为\(O(n^2\log n)\),可分治做这件事,复杂度为\( ...
- 【XSY2666】排列问题 DP 容斥原理 分治FFT
题目大意 有\(n\)种颜色的球,第\(i\)种有\(a_i\)个.设\(m=\sum a_i\).你要把这\(m\)个小球排成一排.有\(q\)个询问,每次给你一个\(x\),问你有多少种方案使得相 ...
- 【XSY2887】【GDOI2018】小学生图论题 分治FFT 多项式exp
题目描述 在一个 \(n\) 个点的有向图中,编号从 \(1\) 到 \(n\),任意两个点之间都有且仅有一条有向边.现在已知一些单向的简单路径(路径上任意两点各不相同),例如 \(2\to 4\to ...
- prime distance on a tree(点分治+fft)
最裸的点分治+fft,调了好久,太菜了.... #include<iostream> #include<cstring> #include<cstdio> #inc ...
- 【XSY2744】信仰圣光 分治FFT 多项式exp 容斥原理
题目描述 有一个\(n\)个元素的置换,你要选择\(k\)个元素,问有多少种方案满足:对于每个轮换,你都选择了其中的一个元素. 对\(998244353\)取模. \(k\leq n\leq 1525 ...
- 【BZOJ5119】【CTT2017】生成树计数 DP 分治FFT 斯特林数
CTT=清华集训 题目大意 有\(n\)个点,点权为\(a_i\),你要连接一条边,使该图变成一颗树. 对于一种连边方案\(T\),设第\(i\)个点的度数为\(d_i\),那么这棵树的价值为: \[ ...
随机推荐
- 【LeetCode】482. License Key Formatting 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- 1110 距离之和最小 V3
1110 距离之和最小 V3 基准时间限制:1 秒 空间限制:131072 KB X轴上有N个点,每个点除了包括一个位置数据X[i],还包括一个权值W[i].该点到其他点的带权距离 = 实际距离 * ...
- XSLT映射文件函数
任何的编程语言或者是SQL语句都有内置的函数或方法,而强大灵活的xslt技术也是如此.熟练掌握XSLT的常用函数的用法,XSLT的应用将变得如此轻松,你会发现XSLT比想象中还要牛!以下是xslt数值 ...
- CS5211完全替代兼容LT7211|PS8625|CH7511方案|EDP转LVDS|Capstone CS5211
CH7511|LT7211|PS8625替代方案--Capstone CS5211AN 设计EDP转LVDS优势方案原理图+PCB板设计 CH7511|LT7211|PS8625这三款都是专门用于设计 ...
- Android开发 SeekBar(拖动条)的使用
SeekBar是Progress的子类,Progress主要用来显示进度,但是不能和用户互动,而SeekBar则可以供用户进行拖动改变进度值 实现拖动进度条并显示在文本中: <?xml vers ...
- 编写Java程序,使用Set实现不重复添加用户
返回本章节 返回作业目录 需求说明: 在控制台输入用户信息,用户信息包括姓名.性别和年龄,将用户信息保存至User对象中. 将User对象保存至HashSet集合中. 规定如果两个User对象的姓名. ...
- java知识点链接
业务复杂=if else?刚来的大神竟然用策略+工厂彻底干掉了他们! 细思极恐-你真的会写java吗? [解锁新姿势] 兄dei,你代码需要优化了 消灭 Java 代码的"坏味道" ...
- nginx高并发配置详解
https://www.cnblogs.com/liqiu/p/3152206.html 1. worker_processes 8; nginx 进程数,建议按照cpu 数目来指定,一般为它的倍数 ...
- Java|从Integer和int的区别认识包装类
https://blog.csdn.net/darlingwood2013/article/details/96969339?utm_medium=distribute.pc_relevant.non ...
- 简单的树莓派4b装64位系统+docker和docker-compose
起因是这样的,我系统崩了 事先准备 wifi或网线 树莓派和电源 内存卡和读卡器 首先是装系统 去https://downloads.raspberrypi.org/raspios_arm64/ima ...