如今随着互联网的发展,数据的量级也是撑指数的增长,从GB到TB到PB。对数据的各种操作也是愈加的困难,传统的关系性数据库已经无法满足快速查询与插入数据的需求。这个时候NoSQL的出现暂时解决了这一危机。它通过降低数据的安全性,减少对事务的支持,减少对复杂查询的支持,来获取性能上的提升。但是,在有些场合NoSQL一些折衷是无法满足使用场景的,就比如有些使用场景是绝对要有事务与安全指标的。这个时候NoSQL肯定是无法满足的,所以还是需要使用关系性数据库。

虽然关系型数据库在海量数据中逊色于NoSQL数据库,但是如果你操作正确,它的性能还是会满足你的需求的。针对数据的不同操作,其优化方向也是不尽相同。对于数据移植,查询和插入等操作,可以从不同的方向去考虑。而在优化的时候还需要考虑其他相关操作是否会产生影响。就比如你可以通过创建索引提高查询性能,但是这会导致插入数据的时候因为要建立更新索引导致插入性能降低,你是否可以接受这一降低那。所以,对数据库的优化是要考虑多个方向,寻找一个折衷的最佳方案。

一:查询优化

1:创建索引。

最简单也是最常用的优化就是查询。因为对于CRUD操作,read操作是占据了绝大部分的比例,所以read的性能基本上决定了应用的性能。对于查询性能最常用的就是创建索引。经过测试,2000万条记录,每条记录200字节两列varchar类型的。当不使用索引的时候查询一条记录需要一分钟,而当创建了索引的时候查询时间可以忽略。但是,当你在已有数据上添加索引的时候,则需要耗费非常大的时间。我插入2000万条记录之后,再创建索引大约话费了几十分钟的样子。

创建索引的弊端和场合。虽然创建索引可以很大程度上优化查询的速度,但是弊端也是很明显的。一个是在插入数据的时候,创建索引也需要消耗部分的时间,这就使得插入性能在一定程度上降低;另一个很明显的是数据文件变的更大。在列上创建索引的时候,每条索引的长度是和你创建列的时候制定的长度相同的。比如你创建varchar(100),当你在该列上创建索引,那么索引的长度则是102字节,因为长度超过64字节则会额外增加2字节记录索引的长度。

从上图可以看到我在YCSB_KEY这一列(长度100)上创建了一个名字为index_ycsb_key的索引,每条索引长度都为102,想象一下当数据变的巨大无比的时候,索引的大小也是不可以小觑的。而且从这也可以看出,索引的长度和列类型的长度还不同,比如varchar它是变长的字符类型(请看MySQL数据类型分析),实际存储长度是是实际字符的大小,但是索引却是你声明的长度的大小。你创建列的时候声明100字节,那么索引长度就是这个字节再加上2,它不管你实际存储是多大。

除了创建索引需要消耗时间,索引文件体积会变的越来越大之外,创建索引也需要看的你存储数据的特征。当你存储数据很大一部分都是重复记录,那这个时候创建索引是百害而无一利。请先查看MySQL索引介绍。所以,当很多数据重复的时候,索引带来的查询提升的效果是可以直接忽略的,但是这个时候你还要承受插入数据的时候创建索引带来的性能消耗。

2:缓存的配置。

在MySQL中有多种多样的缓存,有的缓存负责缓存查询语句,也有的负责缓存查询数据。这些缓存内容客户端无法操作,是由server端来维护的。它会随着你查询与修改等相应不同操作进行不断更新。通过其配置文件我们可以看到在MySQL中的缓存:

在这里主要分析query cache,它是主要用来缓存查询数据。当你想使用该cache,必须把query_cache_size大小设置为非0。当设置大小为非0的时候,server会就会缓存每次查询返回的结果,到下次相同查询server就直接从缓存获取数据,而不是再执行查询。能缓存的数据量就和你的size大小设置有关,所以当你设置的足够大,数据可以完全缓存到内存,速度就会非常之快。

但是,query cache也有它的弊端。当你对数据表做任何的更新操作(update/insert/delete)等操作,server为了保证缓存与数据库的一致性,会强制刷新缓存数据,导致缓存数据全部失效。所以,当一个表格的更新数据表操作非常多的话,query cache是不会起到查询提升的性能,还会影响其他操作的性能。

3:slow_query_log分析。

其实对于查询性能提升,最重要也是最根本的手段也是slow_query的设置。

当你设置slow_query_log为on的时候,server端会对每次的查询进行记录,当超过你设置的慢查询时间 (long_query_time)的时候就把该条查询记录到日志。而你对性能进行优化的时候,就可以分析慢查询日志,对慢查询的查询语句进行有目的的优化。可以通过创建各种索引,可以通过分表等操作。那为什么要分库分表那,当不分库分表的时候那个地方是限制性能的地方啊。下面我们就简单介绍。

4:分库分表

分库分表应该算是查询优化的杀手锏了。上述各种措施在数据量达到一定等级之后,能起到优化的作用已经不明显了。这个时候就必须对数据量进行分流。分流一般有分库与分表两种措施。而分表又有垂直切分与水平切分两种方式。下面我们就针对每一种方式简单介绍。

对于mysql,其数据文件是以文件形式存储在磁盘上的。当一个数据文件过大的时候,操作系统对大文件的操作就会比较麻烦与耗时,而且有的操作系统就不支持大文件,所以这个时候就必须分表了。另外对于mysql常用的存储引擎是Innodb,它的底层数据结构是B+树。当其数据文件过大的时候,B+树就会从层次和节点上比较多,当查询一个节点的时候可能会查询很多层次,而这必定会导致多次IO操作进行装载进内存,肯定会耗时的。除此之外还有Innodb对于B+树的锁机制。对每个节点进行加锁,那么当更改表结构的时候,这时候就会树进行加锁,当表文件大的时候,这可以认为是不可实现的。

所以综上我们就必须进行分表与分库的操作。

5:子查询优化

  在查询中经常会用到子查询,在子查询的时候一般使用in或者exist关键词。针对in和exist在查询的时候当数据量大到一定程度以后,查询执行时间就差别比较大。但是,为了避免此类情况出现,最好的方式是使用join查询。因为在绝大多数情况下,服务器对join的查询优化要远远高于子查询优化。在比较高的版本5.6,mysql查询会自动把in查询优化成joint查询,就不会出现子查询比较慢的问题。有时候也可以采用distinct关键词来限制子查询的数量,但是需要注意的是distinct很多时候会转化为group by,这个时候就会出现一个 临时表,就会出现copy数据到临时表的时延。
  更多的子查询优化 请点击
 

二:数据转移

当数据量达到一定等级之后,那么移库将是一个非常慎重又危险的工作。在移库中保证前后数据的一致性,各种突发情况的处理,移库过程中数据的变迁,每一个都是一个非常困难的问题。

2.1:插入数据

  当进行数据迁移的时候,肯定会存在大数据的重新导入,你可以选择直接load文件,有的时候可能就需要代码插入了。这个时候就需要对插入语句进行一定的优化了。这个时候可以使用INSERT DELAYED语句,该语句是当你发出插入请求的时候,不是马上就插入到数据库而是放在缓存里面,等待时机成熟之后再进行插入。

1、对查询进行优化、应尽量避免全表扫描、首先应考虑在 where 及 order by 涉及的列上建立索引。

 
2、应尽量避免在 where 子句中对字段进行 null 值判断、否则将导致引擎放弃使用索引而进行全表扫描、如:
 
select id from t where num is null;
--可以在num上设置默认值0、确保表中num列没有null值、然后这样查询:
 
select id from t where num=0;
3、应尽量避免在 where 子句中使用!=或<>操作符、否则将引擎放弃使用索引而进行全表扫描。
 
4、应尽量避免在 where 子句中使用 or 来连接条件、否则将导致引擎放弃使用索引而进行全表扫描、如:
 
select id from t where num=10 or num=20
--可以这样查询:
 
select id from t where num=10
union all
select id from t where num=20;
5、in 和 not in 也要慎用、否则会导致全表扫描、如:
 
select id from t where num in(1,2,3);
对于连续的数值、能用 between 就不要用 in 了:
 
select id from t where num between 1 and 3;
6、下面的查询也将导致全表扫描:
 
select id from t where name like '%abc%';//开头模糊查询会导致全表查询
--若要提高效率、可以考虑全文检索。
 
7、如果在 where 子句中使用参数、也会导致全表扫描。因为SQL只有在运行时才会解析局部变量、但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而、如果在编译时建立访问计划、变量的值还是未知的、因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
 
select id from t where num= @num ;
--可以改为强制查询使用索引:
 
select id from t with(index(索引名)) where num= @num ;
8、应尽量避免在 where 子句中对字段进行表达式操作、这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100;
--应改为:
select id from t where num=100*2;
 
MyISAM不会全表扫描,InnoDB会全表扫描
 
9、应尽量避免在where子句中对字段进行函数操作、这将导致引擎放弃使用索引而进行全表扫描。如:
 
select id from t where substring(name,1,3)='abc';
--name以abc开头的id
 
select id from t where datediff(day,createdate,'2005-11-30')=0;
--‘2005-11-30’生成的id
--应改为:
 
select id from t where name like 'abc%';
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1';
10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算、否则系统将可能无法正确使用索引。
 
11、在使用索引字段作为条件时、如果该索引是复合索引、那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引、否则该索引将不会被使用、并且应尽可能的让字段顺序与索引顺序相一致。
 
12、不要写一些没有意义的查询、如需要生成一个空表结构:
 
select col1,col2 into #t from t where 1=0;
--这类代码不会返回任何结果集、但是会消耗系统资源的、应改成这样:
 
create table #t(...);
13、很多时候用 exists 代替 in 是一个好的选择:
 
select num from a where num in(select num from b);
--用下面的语句替换:
 
select num from a where exists(select 1 from b where num=a.num);
EXISTS与IN的使用效率的问题,通常情况下采用exists要比in效率高,因为IN不走索引,但要看实际情况具体使用:
IN适合于外表大而内表小的情况;EXISTS适合于外表小而内表大的情况。
 
14、并不是所有索引对查询都有效、SQL是根据表中数据来进行查询优化的、当索引列有大量数据重复时、SQL查询可能不会去利用索引、如一表中有字段sex、male、female几乎各一半、那么即使在sex上建了索引也对查询效率起不了作用。
 
15、索引并不是越多越好、索引固然可以提高相应的 select 的效率、但同时也降低了 insert 及 update 的效率、因为 insert 或 update 时有可能会重建索引、所以怎样建索引需要慎重考虑、视具体情况而定。一个表的索引数最好不要超过6个、若太多则应考虑一些不常使用到的列上建的索引是否有必要。
 
16、应尽可能的避免更新 clustered 索引数据列、因为 clustered 索引数据列的顺序就是表记录的物理存储顺序、一旦该列值改变将导致整个表记录的顺序的调整、会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列、那么需要考虑是否应将该索引建为 clustered 索引。
 
17、尽量使用数字型字段、若只含数值信息的字段尽量不要设计为字符型、这会降低查询和连接的性能、并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符、而对于数字型而言只需要比较一次就够了。
 
18、尽可能的使用 varchar/nvarchar 代替 char/nchar 、因为首先变长字段存储空间小、可以节省存储空间、其次对于查询来说、在一个相对较小的字段内搜索效率显然要高些。
 
19、任何地方都不要使用 select * from t 、用具体的字段列表代替“*”、不要返回用不到的任何字段。
 
20、尽量使用表变量来代替临时表。如果表变量包含大量数据、请注意索引非常有限(只有主键索引)。
 
21、避免频繁创建和删除临时表、以减少系统表资源的消耗。
 
22、临时表并不是不可使用、适当地使用它们可以使某些例程更有效、例如、当需要重复引用大型表或常用表中的某个数据集时。但是、对于一次性事件、最好使用导出表。
 
23、在新建临时表时、如果一次性插入数据量很大、那么可以使用 select into 代替 create table、避免造成大量 log 、以提高速度;如果数据量不大、为了缓和系统表的资源、应先create table、然后insert。
 
24、如果使用到了临时表、在存储过程的最后务必将所有的临时表显式删除、先 truncate table 、然后 drop table 、这样可以避免系统表的较长时间锁定。
 
25、尽量避免使用游标、因为游标的效率较差、如果游标操作的数据超过1万行、那么就应该考虑改写。
 
26、使用基于游标的方法或临时表方法之前、应先寻找基于集的解决方案来解决问题、基于集的方法通常更有效。
 
27、与临时表一样、游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法、尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许、基于游标的方法和基于集的方法都可以尝试一下、看哪一种方法的效果更好。
 
28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON 、在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
 
29、尽量避免大事务操作、提高系统并发能力。
 

30、尽量避免向客户端返回大数据量、若数据量过大、应该考虑相应需求是否合理。

1. 为查询缓存优化你的查询

大多数的MySQL服务器都开启了查询缓存。这是提高性最有效的方法之一,而且这是被MySQL的数据库引擎处理的。当有很多相同的查询被执行了多 次的时候,这些查询结果会被放到一个缓存中,这样,后续的相同的查询就不用操作表而直接访问缓存结果了。

这里最主要的问题是,对于程序员来说,这个事情是很容易被忽略的。因为,我们某些查询语句会让MySQL不使用缓存。请看下面的示例:

1
2
3
4
5
6
// 查询缓存不开启
$r = mysql_query( "SELECT username FROM user WHERE signup_date >= CURDATE()" );
 
// 开启查询缓存
$today = date ( "Y-m-d" );
$r = mysql_query( "SELECT username FROM user WHERE signup_date >= '$today'" );

上面两条SQL语句的差别就是 CURDATE() ,MySQL的查询缓存对这个函数不起作用。所以,像 NOW() 和 RAND() 或是其它的诸如此类的SQL函数都不会开启查询缓存,因为这些函数的返回是会不定的易变的。所以,你所需要的就是用一个变量来代替MySQL的函数,从而 开启缓存。

2. EXPLAIN 你的 SELECT 查询

使用 EXPLAIN 关键字可以让你知道MySQL是如何处理你的SQL语句的。这可以帮你分析你的查询语句或是表结构的性能瓶颈。

EXPLAIN 的查询结果还会告诉你你的索引主键被如何利用的,你的数据表是如何被搜索和排序的……等等,等等。

挑一个你的SELECT语句(推荐挑选那个最复杂的,有多表联接的),把关键字EXPLAIN加到前面。你可以使用phpmyadmin来做这个 事。然后,你会看到一张表格。下面的这个示例中,我们忘记加上了group_id索引,并且有表联接:

当我们为 group_id 字段加上索引后:

我们可以看到,前一个结果显示搜索了 7883 行,而后一个只是搜索了两个表的 9 和 16 行。查看rows列可以让我们找到潜在的性能问题。

3. 当只要一行数据时使用 LIMIT 1

当你查询表的有些时候,你已经知道结果只会有一条结果,但因为你可能需要去fetch游标,或是你也许会去检查返回的记录数。

在这种情况下,加上 LIMIT 1 可以增加性能。这样一样,MySQL数据库引擎会在找到一条数据后停止搜索,而不是继续往后查少下一条符合记录的数据。

下面的示例,只是为了找一下是否有“中国”的用户,很明显,后面的会比前面的更有效率。(请注意,第一条中是Select *,第二条是Select 1)

// 没有效率的:
$r = mysql_query( "SELECT * FROM user WHERE country = 'China'" );
if (mysql_num_rows( $r ) > 0) {
// ...
} // 有效率的:
$r = mysql_query( "SELECT 1 FROM user WHERE country = 'China' LIMIT 1" );
if (mysql_num_rows( $r ) > 0) {
// ...
}

4. 为搜索字段建索引

索引并不一定就是给主键或是唯一的字段。如果在你的表中,有某个字段你总要会经常用来做搜索,那么,请为其建立索引吧。

从上图你可以看到那个搜索字串 “last_name LIKE ‘a%’”,一个是建了索引,一个是没有索引,性能差了4倍左右。

另外,你应该也需要知道什么样的搜索是不能使用正常的索引的。例如,当你需要在一篇大的文章中搜索一个词时,如: “WHERE post_content LIKE ‘%apple%’”,索引可能是没有意义的。你可能需要使用MySQL 全文索引 或是自己做一个索引(比如说:搜索关键词或是Tag什么的)

5. 在Join表的时候使用相当类型的例,并将其索引

如果你的应用程序有很多 JOIN 查询,你应该确认两个表中Join的字段是被建过索引的。这样,MySQL内部会启动为你优化Join的SQL语句的机制。

而且,这些被用来Join的字段,应该是相同的类型的。例如:如果你要把 DECIMAL 字段和一个 INT 字段Join在一起,MySQL就无法使用它们的索引。对于那些STRING类型,还需要有相同的字符集才行。(两个表的字符集有可能不一样)

1
2
3
4
5
6
// 在state中查找company
$r = mysql_query("SELECT company_name FROM users
     LEFT JOIN companies ON (users.state = companies.state)
     WHERE users.id = $user_id ");
 
// 两个 state 字段应该是被建过索引的,而且应该是相当的类型,相同的字符集。

6. 千万不要 ORDER BY RAND()

想打乱返回的数据行?随机挑一个数据?真不知道谁发明了这种用法,但很多新手很喜欢这样用。但你确不了解这样做有多么可怕的性能问题。

如果你真的想把返回的数据行打乱了,你有N种方法可以达到这个目的。这样使用只让你的数据库的性能呈指数级的下降。这里的问题是:MySQL会不得 不去执行RAND()函数(很耗CPU时间),而且这是为了每一行记录去记行,然后再对其排序。就算是你用了Limit 1也无济于事(因为要排序)

下面的示例是随机挑一条记录

1
2
3
4
5
6
7
8
9
// 千万不要这样做:
$r = mysql_query( "SELECT username FROM user ORDER BY RAND() LIMIT 1" );
 
// 这要会更好:
$r = mysql_query( "SELECT count(*) FROM user" );
$d = mysql_fetch_row( $r );
$rand = mt_rand(0, $d [0] - 1);
 
$r = mysql_query( "SELECT username FROM user LIMIT $rand, 1" );

7. 避免 SELECT *

从数据库里读出越多的数据,那么查询就会变得越慢。并且,如果你的数据库服务器和WEB服务器是两台独立的服务器的话,这还会增加网络传输的负载。

所以,你应该养成一个需要什么就取什么的好的习惯。

1
2
3
4
5
6
7
8
9
// 不推荐
$r = mysql_query( "SELECT * FROM user WHERE user_id = 1" );
$d = mysql_fetch_assoc( $r );
echo "Welcome {$d['username']}" ;
 
// 推荐
$r = mysql_query( "SELECT username FROM user WHERE user_id = 1" );
$d = mysql_fetch_assoc( $r );
echo "Welcome {$d['username']}" ;

8. 永远为每张表设置一个ID

我们应该为数据库里的每张表都设置一个ID做为其主键,而且最好的是一个INT型的(推荐使用UNSIGNED),并设置上自动增加的 AUTO_INCREMENT标志。

就算是你 users 表有一个主键叫 “email”的字段,你也别让它成为主键。使用 VARCHAR 类型来当主键会使用得性能下降。另外,在你的程序中,你应该使用表的ID来构造你的数据结构。

而且,在MySQL数据引擎下,还有一些操作需要使用主键,在这些情况下,主键的性能和设置变得非常重要,比如,集群,分区……

在这里,只有一个情况是例外,那就是“关联表”的“外键”,也就是说,这个表的主键,通过若干个别的表的主键构成。我们把这个情况叫做“外键”。比 如:有一个“学生表”有学生的ID,有一个“课程表”有课程ID,那么,“成绩表”就是“关联表”了,其关联了学生表和课程表,在成绩表中,学生ID和课 程ID叫“外键”其共同组成主键。

9. 使用 ENUM 而不是 VARCHAR

ENUM 类型是非常快和紧凑的。在实际上,其保存的是 TINYINT,但其外表上显示为字符串。这样一来,用这个字段来做一些选项列表变得相当的完美。

如果你有一个字段,比如“性别”,“国家”,“民族”,“状态”或“部门”,你知道这些字段的取值是有限而且固定的,那么,你应该使用 ENUM 而不是 VARCHAR。

MySQL也有一个“建议”(见第十条)告诉你怎么去重新组织你的表结构。当你有一个 VARCHAR 字段时,这个建议会告诉你把其改成 ENUM 类型。使用 PROCEDURE ANALYSE() 你可以得到相关的建议。

10. 从 PROCEDURE ANALYSE() 取得建议

PROCEDURE ANALYSE() 会让 MySQL 帮你去分析你的字段和其实际的数据,并会给你一些有用的建议。只有表中有实际的数据,这些建议才会变得有用,因为要做一些大的决定是需要有数据作为基础 的。

例如,如果你创建了一个 INT 字段作为你的主键,然而并没有太多的数据,那么,PROCEDURE ANALYSE()会建议你把这个字段的类型改成 MEDIUMINT 。或是你使用了一个 VARCHAR 字段,因为数据不多,你可能会得到一个让你把它改成 ENUM 的建议。这些建议,都是可能因为数据不够多,所以决策做得就不够准。

在phpmyadmin里,你可以在查看表时,点击 “Propose table structure” 来查看这些建议

一定要注意,这些只是建议,只有当你的表里的数据越来越多时,这些建议才会变得准确。一定要记住,你才是最终做决定的人。

11. 尽可能的使用 NOT NULL

除非你有一个很特别的原因去使用 NULL 值,你应该总是让你的字段保持 NOT NULL。这看起来好像有点争议,请往下看。

首先,问问你自己“Empty”和“NULL”有多大的区别(如果是INT,那就是0和NULL)?如果你觉得它们之间没有什么区别,那么你就不要 使用NULL。(你知道吗?在 Oracle 里,NULL 和 Empty 的字符串是一样的!)

不要以为 NULL 不需要空间,其需要额外的空间,并且,在你进行比较的时候,你的程序会更复杂。 当然,这里并不是说你就不能使用NULL了,现实情况是很复杂的,依然会有些情况下,你需要使用NULL值。

下面摘自MySQL自己的文档:

“NULL columns require additional space in the row to record whether their values are NULL. For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte.”

12. Prepared Statements

Prepared Statements很像存储过程,是一种运行在后台的SQL语句集合,我们可以从使用 prepared statements 获得很多好处,无论是性能问题还是安全问题。

Prepared Statements 可以检查一些你绑定好的变量,这样可以保护你的程序不会受到“SQL注入式”攻击。当然,你也可以手动地检查你的这些变量,然而,手动的检查容易出问题, 而且很经常会被程序员忘了。当我们使用一些framework或是ORM的时候,这样的问题会好一些。

在性能方面,当一个相同的查询被使用多次的时候,这会为你带来可观的性能优势。你可以给这些Prepared Statements定义一些参数,而MySQL只会解析一次。

虽然最新版本的MySQL在传输Prepared Statements是使用二进制形势,所以这会使得网络传输非常有效率。

当然,也有一些情况下,我们需要避免使用Prepared Statements,因为其不支持查询缓存。但据说版本5.1后支持了。

在PHP中要使用prepared statements,你可以查看其使用手册:mysqli 扩展 或是使用数据库抽象层,如: PDO .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// 创建 prepared statement
if ( $stmt = $mysqli ->prepare( "SELECT username FROM user WHERE state=?" )) {
 
     // 绑定参数
     $stmt ->bind_param( "s" , $state );
 
     // 执行
     $stmt ->execute();
 
     // 绑定结果
     $stmt ->bind_result( $username );
 
     // 移动游标
     $stmt ->fetch();
 
     printf( "%s is from %s\n" , $username , $state );
 
     $stmt ->close();
}

13. 无缓冲的查询

正常的情况下,当你在当你在你的脚本中执行一个SQL语句的时候,你的程序会停在那里直到没这个SQL语句返回,然后你的程序再往下继续执行。你可 以使用无缓冲查询来改变这个行为。

关于这个事情,在PHP的文档中有一个非常不错的说明: mysql_unbuffered_query() 函数:

“mysql_unbuffered_query() sends the SQL query query to MySQL without automatically fetching and buffering the result rows as mysql_query() does. This saves a considerable amount of memory with SQL queries that produce large result sets, and you can start working on the result set immediately after the first row has been retrieved as you don’t have to wait until the complete SQL query has been performed.”

上面那句话翻译过来是说,mysql_unbuffered_query() 发送一个SQL语句到MySQL而并不像mysql_query()一样去自动fethch和缓存结果。这会相当节约很多可观的内存,尤其是那些会产生大 量结果的查询语句,并且,你不需要等到所有的结果都返回,只需要第一行数据返回的时候,你就可以开始马上开始工作于查询结果了。

然而,这会有一些限制。因为你要么把所有行都读走,或是你要在进行下一次的查询前调用 mysql_free_result()清除结果。而且, mysql_num_rows() 或 mysql_data_seek() 将无法使用。所以,是否使用无缓冲的查询你需要仔细考虑。

14. 把IP地址存成 UNSIGNED INT

很多程序员都会创建一个 VARCHAR(15) 字段来存放字符串形式的IP而不是整形的IP。如果你用整形来存放,只需要4个字节,并且你可以有定长的字段。而且,这会为你带来查询上的优势,尤其是当 你需要使用这样的WHERE条件:IP between ip1 and ip2。

我们必需要使用UNSIGNED INT,因为 IP地址会使用整个32位的无符号整形。

而你的查询,你可以使用 INET_ATON() 来把一个字符串IP转成一个整形,并使用 INET_NTOA() 把一个整形转成一个字符串IP。在PHP中,也有这样的函数 ip2long() 和 long2ip() 。

1
$r = "UPDATE users SET ip = INET_ATON('{$_SERVER['REMOTE_ADDR']}') WHERE user_id = $user_id" ;

15. 固定长度的表会更快

如果表中的所有字段都是“固定长度”的,整个表会被认为是 “static” 或 “fixed-length” 。 例如,表中没有如下类型的字段: VARCHAR,TEXT,BLOB。只要你包括了其中一个这些字段,那么这个表就不是“固定长度静态表”了,这样,MySQL 引擎会用另一种方法来处理。

固定长度的表会提高性能,因为MySQL搜寻得会更快一些,因为这些固定的长度是很容易计算下一个数据的偏移量的,所以读取的自然也会很快。而如果 字段不是定长的,那么,每一次要找下一条的话,需要程序找到主键。

并且,固定长度的表也更容易被缓存和重建。不过,唯一的副作用是,固定长度的字段会浪费一些空间,因为定长的字段无论你用不用,他都是要分配那么多 的空间。

使用“垂直分割”技术(见下一条),你可以分割你的表成为两个一个是定长的,一个则是不定长的。

16. 垂直分割

“垂直分割”是一种把数据库中的表按列变成几张表的方法,这样可以降低表的复杂度和字段的数目,从而达到优化的目的。(以前,在银行做过项目,见过 一张表有100多个字段,很恐怖)

示例一 :在Users表中有一个字段是家庭地址,这个字段是可选字段,相比起,而且你在数据库操作的时候除了个 人信息外,你并不需要经常读取或是改写这个字段。那么,为什么不把他放到另外一张表中呢? 这样会让你的表有更好的性能,大家想想是不是,大量的时候,我对于用户表来说,只有用户ID,用户名,口令,用户角色等会被经常使用。小一点的表总是会有 好的性能。

示例二 : 你有一个叫 “last_login” 的字段,它会在每次用户登录时被更新。但是,每次更新时会导致该表的查询缓存被清空。所以,你可以把这个字段放到另一个表中,这样就不会影响你对用户 ID,用户名,用户角色的不停地读取了,因为查询缓存会帮你增加很多性能。

另外,你需要注意的是,这些被分出去的字段所形成的表,你不会经常性地去Join他们,不然的话,这样的性能会比不分割时还要差,而且,会是极数级 的下降。

17. 拆分大的 DELETE 或 INSERT 语句

如果你需要在一个在线的网站上去执行一个大的 DELETE 或 INSERT 查询,你需要非常小心,要避免你的操作让你的整个网站停止相应。因为这两个操作是会锁表的,表一锁住了,别的操作都进不来了。

Apache 会有很多的子进程或线程。所以,其工作起来相当有效率,而我们的服务器也不希望有太多的子进程,线程和数据库链接,这是极大的占服务器资源的事情,尤其是 内存。

如果你把你的表锁上一段时间,比如30秒钟,那么对于一个有很高访问量的站点来说,这30秒所积累的访问进程/线程,数据库链接,打开的文件数,可 能不仅仅会让你泊WEB服务Crash,还可能会让你的整台服务器马上掛了。

所以,如果你有一个大的处理,你定你一定把其拆分,使用 LIMIT 条件是一个好的方法。下面是一个示例:

1
2
3
4
5
6
7
8
9
10
while (1) {
     //每次只做1000条
     mysql_query( "DELETE FROM logs WHERE log_date <= '2009-11-01' LIMIT 1000" );
     if (mysql_affected_rows() == 0) {
         // 没得可删了,退出!
         break ;
     }
     // 每次都要休息一会儿
     usleep(50000);
}

18. 越小的列会越快

对于大多数的数据库引擎来说,硬盘操作可能是最重大的瓶颈。所以,把你的数据变得紧凑会对这种情况非常有帮助,因为这减少了对硬盘的访问。

参看 MySQL 的文档 Storage Requirements 查看所有的数据类型。

如果一个表只会有几列罢了(比如说字典表,配置表),那么,我们就没有理由使用 INT 来做主键,使用 MEDIUMINT, SMALLINT 或是更小的 TINYINT 会更经济一些。如果你不需要记录时间,使用 DATE 要比 DATETIME 好得多。

当然,你也需要留够足够的扩展空间,不然,你日后来干这个事,你会死的很难看,参看Slashdot 的例子 (2009年11月06日),一个简单的ALTER TABLE语句花了3个多小时,因为里面有一千六百万条数据。

19. 选择正确的存储引擎

在 MySQL 中有两个存储引擎 MyISAM 和 InnoDB,每个引擎都有利有弊。酷壳以前文章《MySQL: InnoDB 还是 MyISAM? 》讨论和这个事情。

MyISAM 适合于一些需要大量查询的应用,但其对于有大量写操作并不是很好。甚至你只是需要update一个字段,整个表都会被锁起来,而别的进程,就算是读进程都 无法操作直到读操作完成。另外,MyISAM 对于 SELECT COUNT(*) 这类的计算是超快无比的。

InnoDB 的趋势会是一个非常复杂的存储引擎,对于一些小的应用,它会比 MyISAM 还慢。他是它支持“行锁” ,于是在写操作比较多的时候,会更优秀。并且,他还支持更多的高级应用,比如:事务。

下面是MySQL的手册

20. 使用一个对象关系映射器(Object Relational Mapper)

使用 ORM (Object Relational Mapper),你能够获得可靠的性能增涨。一个ORM可以做的所有事情,也能被手动的编写出来。但是,这需要一个高级专家。

ORM 的最重要的是“Lazy Loading”,也就是说,只有在需要的去取值的时候才会去真正的去做。但你也需要小心这种机制的副作用,因为这很有可能会因为要去创建很多很多小的查 询反而会降低性能。

ORM 还可以把你的SQL语句打包成一个事务,这会比单独执行他们快得多得多。

目前,个人最喜欢的PHP的ORM是:Doctrine 。

21. 小心“永久链接”

“永久链接”的目的是用来减少重新创建MySQL链接的次数。当一个链接被创建了,它会永远处在连接的状态,就算是数据库操作已经结束了。而且,自 从我们的Apache开始重用它的子进程后——也就是说,下一次的HTTP请求会重用Apache的子进程,并重用相同的 MySQL 链接。

在理论上来说,这听起来非常的不错。但是从个人经验(也是大多数人的)上来说,这个功能制造出来的麻烦事更多。因为,你只有有限的链接数,内存问 题,文件句柄数,等等。

而且,Apache 运行在极端并行的环境中,会创建很多很多的了进程。这就是为什么这种“永久链接”的机制工作地不好的原因。在你决定要使用“永久链接”之前,你需要好好地 考虑一下你的整个系统的架构。

 补充:

22、Inner join 比直接逗号内联速度要快

select * from a,b where a.id=b.id;
select * from a inner join b on a.id=b.id;

虽然都是内联效果,但测试结果是inner join 速度要快一些

PS.explain 命令

  mysql中有一个explain 命令可以用来分析select 语句的运行效果,例如explain可以获得select语句使用的索引情况、排序的情况等等。

除此以外,explain 的extended 扩展能够在原本explain的基础上额外的提供一些查询优化的信息,这些信息可以通过mysql的show warnings命令得到。

下面是一个最简单的例子:

首先执行对想要分析的语句进行explain,并带上extended选项
mysql> explain extended select * from account\G;

示例:

  1. mysql> explain select * from event;
  2. +—-+————-+——-+——+—————+——+———+——+——+——-+
  3. | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
  4. +—-+————-+——-+——+—————+——+———+——+——+——-+
  5. | 1 | SIMPLE | event | ALL | NULL | NULL | NULL | NULL | 13 | |
  6. +—-+————-+——-+——+—————+——+———+——+——+——-+
  7. 1 row in set (0.00 sec)

各个属性的含义

id

select查询的序列号

select_type

select查询的类型,主要是区别普通查询和联合查询、子查询之类的复杂查询。

table

输出的行所引用的表。

type

联合查询所使用的类型。

type显示的是访问类型,是较为重要的一个指标,结果值从好到坏依次是:

system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index > ALL

一般来说,得保证查询至少达到range级别,最好能达到ref。

possible_keys

指出MySQL能使用哪个索引在该表中找到行。如果是空的,没有相关的索引。这时要提高性能,可通过检验WHERE子句,看是否引用某些字段,或者检查字段不是适合索引。

key

显示MySQL实际决定使用的键。如果没有索引被选择,键是NULL。

key_len

显示MySQL决定使用的键长度。如果键是NULL,长度就是NULL。文档提示特别注意这个值可以得出一个多重主键里mysql实际使用了哪一部分。

ref

显示哪个字段或常数与key一起被使用。

rows

这个数表示mysql要遍历多少数据才能找到,在innodb上是不准确的。

Extra

如果是Only index,这意味着信息只用索引树中的信息检索出的,这比扫描整个表要快。

如果是where used,就是使用上了where限制。

如果是impossible where 表示用不着where,一般就是没查出来啥。

如果此信息显示Using filesort或者Using temporary的话会很吃力,WHERE和ORDER BY的索引经常无法兼顾,如果按照WHERE来确定索引,那么在ORDER BY时,就必然会引起Using filesort,这就要看是先过滤再排序划算,还是先排序再过滤划算。

PS.Clustered索引和nonClustered索引

Clustered 索引(聚集索引、聚簇索引)在数据表中按照物理顺序存储数据。因为在表中只有一个物理顺序,所以在每个表中只能有一个clustered索引。在查找某个范围内的数据 时,Clustered索引是一种非常有效的索引,因为这些数据在存储的时候已经按照物理顺序排好序了。

Nonclustered索引(非聚集索引、非聚簇索引)不会影响到下面的物理存储,但是它是由数据行指针构成的。如果已经存在一个clustered索引,在 nonclustered中的索引指针将包含clustered索引的位置参考。这些索引比数据更紧促,而且对这些索引的扫描速度比对实际的数据表扫描要 快得多。

主键就是聚集索引      
        这种想法是极端错误的,是对聚集索引的一种浪费。虽然SQL SERVER默认是在主键上建立聚集索引的。      
        通常,我们会在每个表中都建立一个ID列,以区分每条数据,并且这个ID列是自动增大的,步长一般为1。我们的这个办公自动化的实例中的列Gid就是如此。此时,如果我们将这个列设为主键,SQL SERVER会将此列默认为聚集索引。这样做有好处,就是可以让您的数据在数据库中按照ID进行物理排序,但笔者认为这样做意义不大。      
        显而易见,聚集索引的优势是很明显的,而每个表中只能有一个聚集索引的规则,这使得聚集索引变得更加珍贵。    
        从聚集索引的定义我们可以看出,使用聚集索引的最大好处就是能够根据查询要求,迅速缩小查询范围,避免全表扫描。在实际应用中,因为ID号是自动生成的,我们并不知道每条记录的ID号,所以我们很难在实践中用ID号来进行查询。这就使让ID号这个主键作为聚集索引成为一种资源浪费。其次,让每个ID号都不同的字段作为聚集索引也不符合"大数目的不同值情况下不应建立聚合索引"规则;当然,这种情况只是针对用户经常修改记录内容,特别是索引项的时候会负作用,但对于查询速度并没有影响。

普通索引:最基本的索引,没有任何限制
唯一索引:与"普通索引"类似,不同的就是:索引列的值必须唯一,但允许有空值。
主键索引:它 是一种特殊的唯一索引,不允许有空值。 
全文索引:仅可用于 MyISAM 表,针对较大的数据,生成全文索引很耗时好空间。
组合索引:为了更多的提高mysql效率可建立组合索引,遵循”最左前缀“原则。查询的时候用到AB列,有时候只会单独用B,有时候又会单独用到C,这个时候建立BA复合索引和C索引

multi column的索引与isolate的column索引,到底孰优孰劣?结论如下:

  1. 对于具有2个用and连接条件的语句,且2个列之间的关联度较低的情况下,multi col index有一定优势。
  2. 对于具有2个用and连接条件的语句,且2个列之间的关联度较高的情况下,multi col index有很大优势。
  3. 对于具有2个用or连接条件的语句,isolate col index有一定优势,因为这种情况下multi col index 将会导致全表扫描,而前者可以用到index merge的优化。
   2个单列索引  一个列  复合索引
低关联度and  70ms  290ms  10ms
高关联度and  360ms  290ms  300ms
or  66ms   3370ms

补充:

刚遇到一个问题,就是带索引查询语句,行锁无效了,锁的还是整张表。(2017/07/03)

经过网上查阅,确认当字段重复率太高,比如只有 2 个值,分别是 a 和 b, 而数据量相对于这两个值来说却是比较大的,比如有 10 条, 5 倍的关系,这个时候行锁就无效了。具体边界值多少不太清楚。

原因是mysql 在解释 sql 的时候,会忽略索引,因为它的优化器发现:即使使用了索引,还是要做全表扫描,故而放弃了索引,也就没有使用行锁,却使用了表锁。简单的讲,就是 MYSQL 无视了你的索引,它觉得与其行锁,还不如直接表锁,毕竟它觉得表锁所花的代价比行锁来的小。以上问题即便你使用了 force index 强制索引,结果还是一样,永远都是表锁。

原文地址:http://www.open-open.com/lib/view/open1430901016179.html#articleHeader0

【转】【MySql】MySql优化要点的更多相关文章

  1. mysql 数据库优化要点

    1尽可能使用更小的类型 2尽可能的定义字段为not null,除非这个字段需要设置成null 3如果没有可变长度的字段varchar,尽可使用char 4所有字段应该有默认值 5所有的数据应该在保存之 ...

  2. Mysql优化要点

    优化MySQL Mysql优化要点 慢查询 Explain mysql慢查询 注意事项 SELECT语句务必指明字段名称 SELECT *增加很多不必要的消耗(cpu.io.内存.网络带宽):增加了使 ...

  3. 叶金荣:MySQL通用优化技巧

    转自:http://mp.weixin.qq.com/s?__biz=MjM5NDE0MjI4MA==&mid=208777870&idx=1&sn=6efddd6283e4d ...

  4. MySQL通用优化手册

    转载: MySQL通用优化手册 内容提纲 MySQL的特点: 硬件.系统优化: MySQL 配置优化: SCHEMA设计优化: SQL 优化: 其他优化. MySQL 的特点 首先,需要明确的是.想要 ...

  5. MySQL通用优化 叶金荣!!!

    http://mp.weixin.qq.com/s?__biz=MjM5NDE0MjI4MA==&mid=208777870&idx=1&sn=6efddd6283e4deb3 ...

  6. MYSQL之性能优化 ----MySQL性能优化必备25条

    今天,数据库的操作越来越成为整个应用的性能瓶颈了,这点对于Web应用尤其明显.关于数据库的性能,这并不只是DBA才需要担心的事,而这更是我 们程序员需要去关注的事情.当我们去设计数据库表结构,对操作数 ...

  7. redmine在linux上的mysql性能优化方法与问题排查方案

    iredmine的linux服务器mysql性能优化方法与问题排查方案     问题定位:   客户端工具: 1. 浏览器inspect-tool的network timing工具分析   2. 浏览 ...

  8. Mysql 性能优化教程

    Mysql 性能优化教程 目录 目录 1 背景及目标 2 Mysql 执行优化 2 认识数据索引 2 为什么使用数据索引能提高效率 2 如何理解数据索引的结构 2 优化实战范例 3 认识影响结果集 4 ...

  9. 转 Mysql性能优化教程

    Mysql性能优化教程 背景及目标 厦门游家公司(4399.com)用于员工培训和分享. 针对用户群为已经使用过mysql环境,并有一定开发经验的工程师 针对高并发,海量数据的互联网环境. 本文语言为 ...

  10. MySQL详解(25)-----------MySQL性能优化

    1.    简介 在Web应用程序体系架构中,数据持久层(通常是一个关系数据库)是关键的核心部分,它对系统的性能有非常重要的影响.MySQL是目前使用最多的开源数据库,但是MySQL数据库的默认设置性 ...

随机推荐

  1. VS 快捷键

    项目相关的快捷键 Ctrl + Shift + B = 生成项目 Ctrl + Alt + L = 显示Solution Explorer(解决方案资源管理器) Shift + Alt+ C = 添加 ...

  2. CSS3过渡详解-遁地龙卷风

    第二版 0.环境准备 (1)过渡需要浏览器的支持,使用这些属性要加上浏览器厂商的前缀,我用的chrome49已经不需要前缀了, -o- Opera -webkit- Safari.Chrome -mo ...

  3. HTML5自定义属性之data-*

    HTML5 增加了一项新功能是 自定义数据属性 ,也就是  data-* 自定义属性.在HTML5中我们可以使用以 data- 为前缀来设置我们需要的自定义属性,来进行一些数据的存放.当然高级浏览器下 ...

  4. mysql存储过程详解

    mysql存储过程详解 1.      存储过程简介   我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的S ...

  5. iOS UISearchController的使用

    在iOS9中,UISearchDisplayController 已经被UISearchController替代.搜索框是一种常用的控件. 假设我们要满足下图的需求,产生100个“数字+三个随机字母” ...

  6. 基本排序算法——冒泡排序java实现

    冒泡排序是原理最简单的一种排序算法,具体思想就不多说了,代码如下: eclipse4.3中编译通过 package sort.basic; import java.util.Arrays; publi ...

  7. SharePoint 2013 图文开发系列之事件接收器

    在SharePoint的使用中,我们经常需要在完成一个动作之后,触发一个事件:比如,我们上传一个文档,但是没有标题,我们需要在上传完成之后,触发一个事件把文件名同步到标题,这就需要用到事件接收器. 此 ...

  8. ImageLoader配合ImageSwitcher的使用

    先在MyApplication中初始化ImageLoader initImageLoader(getApplicationContext()); /** * 初始化ImageLoader * 如果你经 ...

  9. iOS开发中的http浅析

      至于为什么要进行HTTP请求我就不说了.本文主要对HTTP协议做了一些介绍,主要针对网络编程和面试. 先从流程开始说起 APP <---> 服务器 <---> 后台​ 1) ...

  10. KVC&&&KVO

    KVC 什么是KVC --->What KVC指的就是NSKeyValueCoding非正式协议. KVC是一种间接地访问对象的属性的机制. 这种间接表现在通过字符串来标识属性,而不是通过调用存 ...