Reproducing Kernel Hilbert Space (RKHS)
概
这里对RKHS做一个简单的整理, 之前的理解错得有点离谱了.
主要内容
首先要说明的是, RKHS也是指一种Hilbert空间, 只是其有特殊的性质.
Hilbert空间\(\mathcal{H}\), 其中的每个元素\(f: \mathcal{X} \rightarrow \mathbb{K}\), 并由内积\(\langle \cdot, \cdot, \rangle_{\mathcal{H}}\)建立联系. 我们考虑如下的线性算子:
\]
进一步假设\(\delta_x\)是有界线性算子, 则根据Riesz表示定理可知, 存在唯一的\(\phi_x \in \mathcal{H}\),
\]
此时
\]
RKHS指的就是每一个\(\delta_x, \forall x \in \mathcal{X}\)均为有界线性算子, 换言之,
\]
一般的, RKHS总会和某些特定的kernel \(K\)联系在一起, 实际上, 对于上述情况:
\]
在什么情况下可以通过\(K\)确定一个Hilbert 空间?
Moore-Aronszajn 定理: 当\(K\)对称正定, 则存在唯一的Hilbert空间, 其reproducing kernel是\(K\).
proof:
首先通过K构造线性空间\(\mathrm{span}(\{K(\cdot, x): x \in \mathcal{X}\})\), 再赋予内积
\]
其中, 内积的可交换性由K的对称性带来, 内积\((x, x)=0\)当且仅当\(x=0\)由正定性带来.
再令上述内积空间的闭包为
\]
即包括
\]
显然
\]
故
\]
故\(\mathcal{H}\)是RKHS且其reproducing kernel即为\(K\).
倘若还存在别的Hilbert空间\(\mathcal{G}\), 那么显然\(\mathcal{H} \subset \mathcal{G}\), 只需证明反包含即可. 对于任意的\(g \in \mathcal{G}\), 可分解为
\]
\]
故\(g\in \mathcal{H}\).
Reproducing Kernel Hilbert Space (RKHS)的更多相关文章
- The space of such functions is known as a reproducing kernel Hilbert space.
Reproducing kernel Hilbert space Mapping the points to a higher dimensional feature space http://www ...
- paper 10:支持向量机系列七:Kernel II —— 核方法的一些理论补充,关于 Reproducing Kernel Hilbert Space 和 Representer Theorem 的简介。
在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 ϕ(⋅) 将原始数据进行映射,使得原来的非线性问题在映射之后的空间 ...
- Hilbert space
Definition A Hilbert space H is a real or complex inner product space that is also a complete metric ...
- Cauchy sequence Hilbert space 希尔波特空间的柯西序列
http://mathworld.wolfram.com/HilbertSpace.html A Hilbert space is a vector space with an inner prod ...
- 希尔伯特空间(Hilbert Space)是什么?
希尔伯特空间是老希在解决无穷维线性方程组时提出的概念, 原来的线性代数理论都是基于有限维欧几里得空间的, 无法适用, 这迫使老希去思考无穷维欧几里得空间, 也就是无穷序列空间的性质. 大家知道, 在一 ...
- 希尔伯特空间(Hilbert Space)
欧氏空间 → 线性空间 + 内积 ⇒ 内积空间(元素的长度,元素的夹角和正交) 内积空间 + 完备性 ⇒ 希尔伯特空间 0. 欧几里得空间 欧氏空间是一个特别的度量空间,它使得我们能够对其的拓扑性质, ...
- Kernel Methods (6) The Representer Theorem
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...
- Deep Learning and Shallow Learning
Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门 ...
- 【论文笔记】Domain Adaptation via Transfer Component Analysis
论文题目:<Domain Adaptation via Transfer Component Analysis> 论文作者:Sinno Jialin Pan, Ivor W. Tsang, ...
随机推荐
- A Child's History of England.5
Above all, it was in the Roman time, and by means of Roman ships, that the Christian Religion was fi ...
- kafka安装(单机版)
一.安装kafka(单机版) 因为现在的kafka安装包都自带zookeeper,所以如果是安装本地单机版kafka,不需要额外去安装zookeeper,使用自带的就可以了. 1.下载kafka 2. ...
- Linux基础命令---mysql
mysql mysql是一个简单的sql shell,它可以用来管理mysql数据库. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora. 1.语法 m ...
- Spring Cloud Feign原理详解
目录 1.什么是Feign? 2.Open Feign vs Spring Cloud Feign 2.1.OpenFeign 2.2.Spring Cloud Open Feign 3.Spring ...
- 【阿菜做实践】利用ganache-cli本地fork以太坊主链分叉
前言 Fork主网意思是模拟具有与主网相同的状态的网络,但它将作为本地开发网络工作. 这样你就可以与部署的协议进行交互,并在本地测试复杂的交互.不用担心分叉主网作为测试链会占很多内存.这些方法都不会将 ...
- shell脚本 binlog方式增量备份mysql
一.简介 源码地址 日期:2018/4/12 介绍:复制Binlog日志方式的增量备份脚本,并保存固定天数的备份 效果图: 二.使用 适用:centos6+ 语言:中文 注意:使用前先修改脚本中变量 ...
- py脚本 获取当前运行服务的相关信息
一.简介 最近在统计系统中都部署了什么服务,但服务器太多,在没有标准化之前进行整理,还是写脚本收集方便一些. 当然还是需要人工去判断整理表格,为后面标准化做准备.脚本是python2.7的,默认的ce ...
- Linux下安装chrome
目录 一.Centos系列 二.Ubuntu系列 一.Centos系列 1.配置yum下载源 vim /etc/yum.repos.d/chrome.repo [google-chrome] name ...
- 第45篇-查找native方法的本地实现函数native_function
在之前介绍为native方法设置解释执行的入口时讲到过Method实例的内存布局,如下: 对于第1个slot来说,如果是native方法,其对应的本地函数的实现会放到Method实例的native_f ...
- 超!超!超简单,Linux安装Docker
1.安装依赖yum-util 提供yum-config-manager功能,另外两个是devicemapper驱动依赖的 sudo yum install -y yum-utils device-ma ...