目录

Lam R, Willcox K, Wolpert D H, et al. Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach[C]. neural information processing systems, 2016: 883-891.

@article{lam2016bayesian,

title={Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach},

author={Lam, Remi and Willcox, Karen and Wolpert, David H},

pages={883--891},

year={2016}}

贝叶斯优化中的多步优化策略. 像经典的EI方法, 就是只考虑一步, 即希望找到

\[r(\mathcal{S}_k, x_{k+1},f_{k+1})=\max \{0, f_{min}^{\mathcal{S}_k}-f_{k+1}\}
\]

的期望收益最大化的点\(x_{k+1}\)为下一个评估点.

上式中的\(f_{min}^{\mathcal{S}_k}\)是指目标函数在集合\(\mathcal{S}_k\)上的最小值.

主要内容

考虑如下动态规划, 第k步的

状态: \(\mathcal{S}_k\), 即观测到的点;

控制: \(u_k\), 且\(u_k(\mathcal{S}_k)=x_{k+1}\)

扰动: \(w_k:=f_{k+1} \sim p(f(x_{k+1})|\mathcal{S}_k)\);

设状态转移为:

\[\mathcal{S}_{k+1} = \mathcal{F}_k (\mathcal{S}_{k}, x_{k+1}, f_{k+1}) = \mathcal{S}_{k}\cup \{(x_{k+1}, f_{k+1})\}.
\]

收益(效用函数):

\[U_k(x_{k+1}; \mathcal{S} _k) = \mathbb{E}_{w_k}[r_k(\mathcal{S}_k, x_{k+1}, f_{k+1})+J_{k+1}(\mathcal{F}_k (\mathcal{S}_{k}, x_{k+1}, f_{k+1}))], \\
J_k(x_{k+1}) = \max_{x_{k+1}} U_k,\\
J_N=r_N(x_{N+1}).
\]

很自然的想法是, 我们最大化\(U_1\), 来获得所需的评估点, 但是问题是, 这个是一个嵌套的最大化优化问题, 不易求解.

本文采用rollout 算法来估计\(U_k\), 具体如下:

给定基本的决策控制\(\pi = (\pi_1, \ldots, \pi_N)\)(比如最大化EI), 为了最优化\(U_k\), 我们先选择用\(H_{k+1}\)估计\(J_{k+1}\), 其定义如下:



其中\(n \in \{k+1, \ldots, N-1\}\), \(\gamma \in [0, 1]\) 用以调节增量.

\(H_n\)是一个期望, 可以用Gauss-Hermite正交化估计:

其中\(\tilde{N} = \min \{k+h, N\}\), 用以限制最大的估计步数, \(\alpha^{(q)}\)是正交系数, \(f_{n+1}^{(q)}\)是Hermite多项式的根(大概).

于是, \(U_k(x_{k+1},\mathcal{S}_k)\)便可用下式估计:



算法如下:

Input: \(h, \gamma, N, \mathcal{S}_1\);

repeat N:

  • 根据(20)近似最大化\(U_k\)
  • 更新\(\mathcal{S}_{k+1}=\mathcal{S}_k \cup \{(x_{k+1},f_{k+1})\}\)

out: \(f_{min}^{S_{N+1}}\).

Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach的更多相关文章

  1. 【转载】AutoML--超参数调优之Bayesian Optimization

    原文:Auto Machine Learning笔记 - Bayesian Optimization 优化器是机器学习中很重要的一个环节.当确定损失函数时,你需要一个优化器使损失函数的参数能够快速有效 ...

  2. 贝叶斯优化(Bayesian Optimization)深入理解

    目前在研究Automated Machine Learning,其中有一个子领域是实现网络超参数自动化搜索,而常见的搜索方法有Grid Search.Random Search以及贝叶斯优化搜索.前两 ...

  3. Bayesian Optimization使用Hyperopt进行参数调优

    超参数优化 Bayesian Optimization使用Hyperopt进行参数调优 1. 前言 本文将介绍一种快速有效的方法用于实现机器学习模型的调参.有两种常用的调参方法:网格搜索和随机搜索.每 ...

  4. 贝叶斯优化 Bayesian Optimization

    贝叶斯优化 Bayesian Optimization 2018年07月02日 22:28:06 余生最年轻 阅读数 4821更多 分类专栏: 机器学习   版权声明:本文为博主原创文章,遵循CC 4 ...

  5. PP: Taking the human out of the loop: A review of bayesian optimization

    Problem: Design problem parameters consist of the search space of your model. Scientists design expe ...

  6. 贝叶斯优化(Bayesian Optimization)只需要看这一篇就够了,算法到python实现

    贝叶斯优化 (BayesianOptimization) 1 问题提出 神经网咯是有许多超参数决定的,例如网络深度,学习率,正则等等.如何寻找最好的超参数组合,是一个老人靠经验,新人靠运气的任务. 穷 ...

  7. [Optimization] Dynamic programming

    “就是迭代,被众人说得这么玄乎" “之所以归为优化,是因为动态规划本质是一个systemetic bruce force" “因为systemetic,所以比穷举好了许多,就认为是 ...

  8. [Optimization] Advanced Dynamic programming

    这里主要是较为详细地理解动态规划的思想,思考一些高质量的案例,同时也响应如下这么一句口号: “迭代(regression)是人,递归(recursion)是神!” Video series for D ...

  9. [Algorithm] Meeting hour optimization (Kanpsack problem) and Dynamic programming

    For example we have array of meeting objects: const data = [ { name: }, { name: }, { name: }, { name ...

随机推荐

  1. 日常Java 2021/10/14

    Java数据结构 Java BitSet类 BitSet类创建一种特殊类型的数组来保存位值,数组大小随需要增加,BitSet(),BitSet(int size) 其中的方法 void and(Bit ...

  2. 学习java 7.16

    学习内容: 线程安全的类 Lock锁 生产者消费者模式 Object类的等待唤醒方法 明天内容: 网络编程 通信程序 遇到问题: 无

  3. myatoi

    atoi (表示 ascii to integer)是把字符串转换成整型数的一个函数,应用在计算机程序和办公软件中.int atoi(const char *nptr) 函数会扫描参数 nptr字符串 ...

  4. 修改 Gradle 插件(Plugins)的下载地址(repositories)

    Gradle 也可以用下面的方式声明使用的插件: 1234 // build.gradleplugins { id 'com.example.plugin', version '1.0'} 其实是从 ...

  5. mysql index 8.0

    创建表 use vodb; drop table if exists test1; create table test1(id int NOT NULL AUTO_INCREMENT primary ...

  6. 【Java基础】ArrayList初始化操作

    要用60个零初始化列表,请执行以下操作: List<Integer> list = new ArrayList<Integer>(Collections.nCopies(60, ...

  7. Spring Batch(8) -- Listeners

    September 29, 2020 by Ayoosh Sharma In this article, we will take a deep dive into different types o ...

  8. Spring MVC与html页面的交互(以传递json数据为例)

    一.导入相jar包 主要包括spring相关jar包和fastjson jar包,具体步骤略. 二.配置相关文件 1.配置web.xml文件 <?xml version="1.0&qu ...

  9. Windows10常用快捷键+cmd常见命令码

    Windows10常用快捷键+cmd常见命令码 1.Ctrl快捷键 Ctrl+C: 复制 Ctrl+V: 粘贴 Ctrl+A: 全选内容 Ctrl+S: 保存 Ctrl+X: 剪切 Ctrl+Z: 撤 ...

  10. pipeline是什么?

    目录 一.pipeline是什么? 二.jenkinsfile是什么 三.pipeline语法选择 四.脚本式和声明式 五.插件与pipeline 一.pipeline是什么? pipeline是部署 ...