Certified Adversarial Robustness via Randomized Smoothing
@article{cohen2019certified,
title={Certified Adversarial Robustness via Randomized Smoothing},
author={Cohen, Jeremy and Rosenfeld, Elan and Kolter, J Zico},
pages={1310--1320},
year={2019}}
概
Certified robustness 区别于一般的启发式的防御, 其在样本\(x\)满足一定的条件下(往往是一个类似于置信度的保证), 可以证明在某个范数球(往往是\(\ell_2\), 正如本文)内能够免疫攻击, 即
\]
这些方法给出了一种不同于adversarial training的思路, 虽然到目前为止, 这些方法往往局限于\(\ell_1, \ell_2\)攻击, 在更为常见的\(\ell_{\infty}\)的表现并不是特别好.
主要内容
方法很简单, 训练的时候:
- Given inputs \(x_i\),
- Generate gaussian noise \(\epsilon_i \sim \mathcal{N}(0, \sigma^2)\);
- Use \(x_i+\epsilon_i\) to train.
实际上这个训练过程, 不从后面的理论的角度看, 可以把它和adversarial training做类比, 实际上都是一种在样本点周围试探性的训练过程. 大概这样子会让整个的loss landscape更加光滑?
测试的时候就不同了, 首先需要认为地设定一个采样次数\(n\),
- Given input \(x\)
- Generate \(n\) gaussian noise \(\epsilon_i, i=1, \ldots, n\).
- For each \(x+\epsilon_i\), the neural network will give a prediction label \(c_i\);
- Count the prediction labels and find the most frequent one, denoted by \(c\).
则\(c\)就是最终的预测是输出, 简而言之, 就是在预测的时候需要统计频率, 这个实际上是寻找最大概率点.
定理1
定理1: 假设\(f:\mathbb{R}^d \rightarrow \mathcal{Y}\) 为一个任意的确定性或者随机的函数, \(\epsilon \sim \mathcal{N}(0, \sigma^2I)\). 定义\(g\)为
g(x):= \arg \max_{c \in \mathcal{Y}} \mathbb{P}(f(x+\epsilon)=c).
\]
假设\(c_A \in \mathcal{Y}\)且\(\underline{p_A}, \overline{p_B} \in [0, 1]\)满足
\mathbb{P}(f(x+\epsilon)=c_A) \ge \underline{p_A} \ge \overline{p_B} \ge \max_{c \not = c_{A}} \mathbb{P}(f(x+\epsilon)=c).
\]
则\(g(x+\delta)=c_A\) 对于任意的\(\|\delta\|_2 < R\), 其中
R=\frac{\sigma}{2}(\Phi^{-1}(\underline{p_A})- \Phi^{-1}(\overline{p_B})).
\]
定理1总结来说就是, 当你的\(f(x+\epsilon)=c_A\)的概率比别的类别的概率大得多的时候, 由(1)式所得到的smooth版分类器\(g\)就能够在某个半径内免疫\(\ell_2\)攻击.
但是需要注意的是, 普通的CNN的训练过程可以保证置信度很高但没法保证(2), 所以为了让(2)式成立这才有了上面的一个训练过程, 其中实际上有一个逼近的过程(虽然感觉有一点牵强):
测试过程中统计频率的行为也得到了解释, 实际上就是为了估计最大概率. 最后, 在作者的代码中, 或者说算法中, 测试的predict可能有点麻烦, 实际上这是作者引入了假设检验, 意图大概是为了有些时候没法判断到底哪个对干脆就不判断来保证安全(测试的时候感觉是没有必要的). 当然了, 在certify accuracy的估计中, \(\alpha\)就是相当有必要了.
代码
Certified Adversarial Robustness via Randomized Smoothing的更多相关文章
- Improving Adversarial Robustness via Channel-Wise Activation Suppressing
目录 概 主要内容 代码 Bai Y., Zeng Y., Jiang Y., Xia S., Ma X., Wang Y. Improving adversarial robustness via ...
- Improving Adversarial Robustness Using Proxy Distributions
目录 概 主要内容 proxy distribution 如何利用构造的数据 Sehwag V., Mahloujifar S., Handina T., Dai S., Xiang C., Chia ...
- Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
目录 概 主要内容 Auto-PGD Momentum Step Size 损失函数 AutoAttack Croce F. & Hein M. Reliable evaluation of ...
- Second Order Optimization for Adversarial Robustness and Interpretability
目录 概 主要内容 (4)式的求解 超参数 Tsiligkaridis T., Roberts J. Second Order Optimization for Adversarial Robustn ...
- IMPROVING ADVERSARIAL ROBUSTNESS REQUIRES REVISITING MISCLASSIFIED EXAMPLES
目录 概 主要内容 符号 MART Wang Y, Zou D, Yi J, et al. Improving Adversarial Robustness Requires Revisiting M ...
- Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2003.10399v2 [cs.CV] 23 Jul 2020 ECCV 2020 1 https://github.com ...
- Adversarial Detection methods
目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...
- Glossary Collection
目录 直接修饰用 间接强调用 (多为副词) 过渡用 特别的名词 动词 词组 各种介词 句子 摘要 引言 总结 正文 实验 直接修饰用 Word 含义 例句 近义词 nuanced adj. 微妙的:具 ...
- Competing in a data science contest without reading the data
Competing in a data science contest without reading the data Machine learning competitions have beco ...
随机推荐
- python 多态、组合、反射
目录 多态.多态性 多态 多态性 鸭子类型 父类限制子类的行为 组合 面向对象的内置函数 反射 多态.多态性 多态 多态通俗理解起来,就像迪迦奥特曼有三种形态一样,怎么变还是迪迦奥特曼 定义:多态指的 ...
- Netty实现Socket
Netty实现Socket 从Java1.4开始, Java引入了non-blocking IO,简称NIO.NIO与传统socket最大的不同就是引入了Channel和多路复用selector的概念 ...
- Oracle中的DBMS_LOCK包的使用
一.DBMS_LOCK相关知识介绍 锁模式: 名字 描述 数据类型 值 nl_mode Null INTEGER 1 ss_mode Sub Shared: used on an aggregate ...
- c学习 - 第五章:选择结构程序设计
5.2 关系运算符与逻辑运算符 !(非) ^ 高 算术运算符 | 关系运算符 | &&和 || | 赋值运算符 | 低
- 利用Windbg分析Magicodes.IE一次错误编写导致内存剧增
由于这近一年时间一直忙于写书和工作,一直没有水文,但是近期有几位朋友使用我们的Magicodes.IE反馈在导出过程中内存暴涨...好吧,不管怎样,不能苦了我们朋友,接下来我们通过windbg来看一下 ...
- 3、Spring的DI依赖注入
一.DI介绍 1.DI介绍 依赖注入,应用程序运行依赖的资源由Spring为其提供,资源进入应用程序的方式称为注入. Spring容器管理容器中Bean之间的依赖关系,Spring使用一种被称为&qu ...
- c++和c中const的区别
const在c与c++的区别与使用 大学期间对c和c++的了解太少了,现在工作了导致自己来恶补,简单的const关键字里面的学问还是挺大的,越是基础的知识越是容易忘却,所以今天开始记录着自己每一天的学 ...
- 网络安全:关于SecOC及测试开发实践简介
前言 我们知道,在车载网络中,大部分的数据都是以明文方式广播发送且无认证接收.这种方案在以前有着低成本.高性能的优势,但是随着当下智能网联化的进程,这种方案所带来的安全问题越来越被大家所重视. 为了提 ...
- YC-Framework版本更新:V1.0.3
分布式微服务框架:YC-Framework版本更新V1.0.3!!! 本次版本V1.0.3更新 集成分布式事务Seata: 集成分布式事务Tx-LCN: 集成Kafka: 集成RocketMQ: 集成 ...
- 拆分函数Splitter.Split…(Power Query 之 M 语言)
按相同分隔符拆分: =Splitter.SplitTextByDelimiter("拆分符号", 引号字符) 拆分符号 直接输入 特殊符号 制表符:#(tab) 回车:#(cr) ...