Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

4.1 Definition of effect modification

什么是 effect modification, 即causal effect在不同因素\(V\)下不同, 即

\[\mathbb{E} [Y^{a=1} - Y^{a=0}|V=1]
\not =
\mathbb{E} [Y^{a=1} - Y^{a=0}|V=0],
\]

或者

\[\frac{
\mathbb{E} [Y^{a=1}|V=1]
}{
\mathbb{E} [Y^{a=0}|V=1]
}
\not =
\frac{
\mathbb{E} [Y^{a=1}|V=0]
}{
\mathbb{E} [Y^{a=0}|V=0]
}.
\]

也就是说\(V\)这个因素会影响causal effect, 或许变好或许变差.

另外需要一提的是, additive effective modification 或许和 multiplicative effect modification 有偏差.

有可能前者显示\(V\)是一个effect modifier, 但是后者显示它不是.

所以一个因素是否是effect modifier还得依赖你所选的衡量指标.

4.2 Stratification to identify effect modification

\[\mathrm{Pr} [Y^{a=1}=1|V=1] - \mathrm{Pr} [Y^{a=0}=1|V=1], \\
\mathrm{Pr} [Y=1|A=1,V=1] - \mathrm{Pr} [Y=1|A=0,V=1], \\
\]

4.3 Why care about effect modification

可迁移性

4.4 Stratification as a form of adjustment

通过\(V\)将整个数据集分成子集, 并对每个子集计算相应的casual effect.

当然, 在此过程中我们往往也是需要条件可交换性的.

4.5 Matching as another form of adjustment

通过随机选择, 使得在不同子集中, 所关心元素的数量是一致的.

比如根据\(A\)划分treated 和 untreated, 通过随机选择使得\(L=l\)在两个子集中的数目是一样的.

此时,

\[\begin{array}{ll}
\mathrm{Pr}[Y^{a=1}]
& = \sum_l \mathrm{Pr} [Y^{a=1}|L=l] \mathrm{Pr}[L=l] \\
& = p \sum_l \mathrm{Pr} [Y|A=1,L=l] \\
& = \frac{1}{\mathrm{Pr}[A=1]} \sum_l \mathrm{Pr} [Y,A=1,L=l] \\
& = \mathrm{Pr} [Y|A=1]
\end{array}
\]

此时, 计算causal effect只需考虑\(\mathrm{Pr}[Y|A=a]\)即可.

4.6 Effect modification and adjustment methods

Standard, IP weighting, stratification, matching这几个方法的比较.

Fine Point

Effect in the treated

\[\mathrm{Pr} [Y=1|A=1]
\not =
\mathrm{Pr} [Y^{a=0}=1|A=1].
\]

Transportability

Collapsibility and the odds ratio

Technical Point

Computing the effect in the treated

计算\(\mathbb{E}[Y^a|A=a']\)只需要部分可交换性\(Y^a \amalg A|L\)即可.

Standard:

\[\sum_l \mathbb{E} [Y|A=a,L=l] \mathrm{Pr}[L=l|A=a'].
\]

IP weighting:

\[\frac{
\mathbb{E}[
\frac{I(A=a)Y}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}
{
\mathbb{E}[
\frac{I(A=a)}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}.
\]

注: 分母实际上是\(\mathrm{Pr}[A=a']\).

Pooling of stratum-specific effect measures

Relation between marginal and conditional risk ratios

\[\mathrm{Pr} [Y^{a=1}=1]
/
\mathrm{Pr} [Y^{a=0}=0] =
\sum_l
\frac{
\mathrm{Pr} [Y^{a=1}=1| L=l]
}
{
\mathrm{Pj} [Y^{a=0}=1|L=l]
}
w(l).
\]

其中,

\[w(l)
=
\frac{
\mathrm{Pr} [Y^{a=0}=1, L=l]
}
{
\mathrm{Pr} [Y^{a=0}=1]
}, \quad
\sum_l w(l)=1.
\]

Chapter 4 Effect Modification的更多相关文章

  1. Chapter 15 Outcome Regression and Propensity Scores

    目录 15.1 Outcome regression 15.2 Propensity scores 15.3 Propensity stratification and standardization ...

  2. Chapter 12 IP Weighting and Marginal Structural Model

    目录 12.1 The causal question 12.2 Estimating IP weights via modeling 12.3 Stabilized IP weights 12.4 ...

  3. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  4. 《SQL Server 2012 T-SQL基础》读书笔记 - 8.数据修改

    Chapter 8 Data Modification SQL Server 2008开始,支持一个语句中插入多行: INSERT INTO dbo.Orders (orderid, orderdat ...

  5. DML_The OUTPUT Clause

    DML_The OUTPUT Clause /**/ ------------------------------------------------------------------------- ...

  6. Chapter Data Modification & Chapter Data Validation

    Chapter Data Modification XF的数据提交,支持单行.集合和多层次的master-details结构的数据. Create 当提交如下数据 <Job> <Id ...

  7. Chapter 6 - How to Play Music and Sound Effect

    In this chapter, we would add background music to the game and play sound effect when the hero fires ...

  8. thinkphp5中Indirect modification of overloaded element of XXX has no effect的解决办法

    最近在使用Thinkphp5做foreach循环嵌套的时候报错:Indirect modification of overloaded element of XXX has no effect,网上搜 ...

  9. Chapter 1 A Definition of Causal Effect

    目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...

随机推荐

  1. js中!!的妙用

    0.-0.null."".false.undefined 或者 NaN转化为false,其他为true

  2. [转] Java中对数据进行加密的几种方法

    加密算法有很多种:这里只大约列举几例: 1:消息摘要:(数字指纹):既对一个任意长度的一个数据块进行计算,产生一个唯一指纹.MD5/SHA1发送给其他人你的信息和摘要,其他人用相同的加密方法得到摘要, ...

  3. Git的使用-一个分支完全替换另一个分支

    之前公司git分支混乱,今天花时间整理了一下,在合并分支的时候遇到一个问题: 一个很久没有拉取远程代码的分支与master分支合并时,出现冲突之外,还会丢失文件,很头疼,然后找到了下面的方法,可以直接 ...

  4. android转换透明度

    比方说 70% 白色透明度. 就用255*0.7=185.5  在把185.5转换成16进制就是B2 你只需要写#B2FFFFFF 如果是黑色就换成6个0就可以了.前2位是控制透明度的.

  5. Spring Cloud Eureka源码分析之服务注册的流程与数据存储设计!

    Spring Cloud是一个生态,它提供了一套标准,这套标准可以通过不同的组件来实现,其中就包含服务注册/发现.熔断.负载均衡等,在spring-cloud-common这个包中,org.sprin ...

  6. [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC

    [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 目录 [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 0x00 摘要 0x0 ...

  7. [BUUCTF]PWN——jarvisoj_test_your_memory

    jarvisoj_test_your_memory 附件 步骤: 例行检查,32位程序,开启了nx保护 试运行一下程序,看看大概的情况 32位ida打开,习惯性的检索程序里的字符串,看到了有关flag ...

  8. CF166A Rank List 题解

    Content 有 \(n\) 个元素,第 \(i\) 个元素包含两个值 \(a_i,b_i\),按照以下规则排序: 如果对于 \(i\neq j\) 有 \(a_i\neq a_j\),则按照 \( ...

  9. 系统丢包net.netfilter.nf_conntrack_max 超限查看

    sysctl  net.netfilter.nf_conntrack_max  查看限制 sysctl net.netfilter.nf_conntrack_count 查看当前是否超限 echo n ...

  10. mongodb 连接方式之mongo-shell

    单机连接:mongo 120.131.0.64:27017 -u root -p KingSoft@1314 --authenticationDatabase admin 字符串连接 python i ...