Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

4.1 Definition of effect modification

什么是 effect modification, 即causal effect在不同因素\(V\)下不同, 即

\[\mathbb{E} [Y^{a=1} - Y^{a=0}|V=1]
\not =
\mathbb{E} [Y^{a=1} - Y^{a=0}|V=0],
\]

或者

\[\frac{
\mathbb{E} [Y^{a=1}|V=1]
}{
\mathbb{E} [Y^{a=0}|V=1]
}
\not =
\frac{
\mathbb{E} [Y^{a=1}|V=0]
}{
\mathbb{E} [Y^{a=0}|V=0]
}.
\]

也就是说\(V\)这个因素会影响causal effect, 或许变好或许变差.

另外需要一提的是, additive effective modification 或许和 multiplicative effect modification 有偏差.

有可能前者显示\(V\)是一个effect modifier, 但是后者显示它不是.

所以一个因素是否是effect modifier还得依赖你所选的衡量指标.

4.2 Stratification to identify effect modification

\[\mathrm{Pr} [Y^{a=1}=1|V=1] - \mathrm{Pr} [Y^{a=0}=1|V=1], \\
\mathrm{Pr} [Y=1|A=1,V=1] - \mathrm{Pr} [Y=1|A=0,V=1], \\
\]

4.3 Why care about effect modification

可迁移性

4.4 Stratification as a form of adjustment

通过\(V\)将整个数据集分成子集, 并对每个子集计算相应的casual effect.

当然, 在此过程中我们往往也是需要条件可交换性的.

4.5 Matching as another form of adjustment

通过随机选择, 使得在不同子集中, 所关心元素的数量是一致的.

比如根据\(A\)划分treated 和 untreated, 通过随机选择使得\(L=l\)在两个子集中的数目是一样的.

此时,

\[\begin{array}{ll}
\mathrm{Pr}[Y^{a=1}]
& = \sum_l \mathrm{Pr} [Y^{a=1}|L=l] \mathrm{Pr}[L=l] \\
& = p \sum_l \mathrm{Pr} [Y|A=1,L=l] \\
& = \frac{1}{\mathrm{Pr}[A=1]} \sum_l \mathrm{Pr} [Y,A=1,L=l] \\
& = \mathrm{Pr} [Y|A=1]
\end{array}
\]

此时, 计算causal effect只需考虑\(\mathrm{Pr}[Y|A=a]\)即可.

4.6 Effect modification and adjustment methods

Standard, IP weighting, stratification, matching这几个方法的比较.

Fine Point

Effect in the treated

\[\mathrm{Pr} [Y=1|A=1]
\not =
\mathrm{Pr} [Y^{a=0}=1|A=1].
\]

Transportability

Collapsibility and the odds ratio

Technical Point

Computing the effect in the treated

计算\(\mathbb{E}[Y^a|A=a']\)只需要部分可交换性\(Y^a \amalg A|L\)即可.

Standard:

\[\sum_l \mathbb{E} [Y|A=a,L=l] \mathrm{Pr}[L=l|A=a'].
\]

IP weighting:

\[\frac{
\mathbb{E}[
\frac{I(A=a)Y}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}
{
\mathbb{E}[
\frac{I(A=a)}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}.
\]

注: 分母实际上是\(\mathrm{Pr}[A=a']\).

Pooling of stratum-specific effect measures

Relation between marginal and conditional risk ratios

\[\mathrm{Pr} [Y^{a=1}=1]
/
\mathrm{Pr} [Y^{a=0}=0] =
\sum_l
\frac{
\mathrm{Pr} [Y^{a=1}=1| L=l]
}
{
\mathrm{Pj} [Y^{a=0}=1|L=l]
}
w(l).
\]

其中,

\[w(l)
=
\frac{
\mathrm{Pr} [Y^{a=0}=1, L=l]
}
{
\mathrm{Pr} [Y^{a=0}=1]
}, \quad
\sum_l w(l)=1.
\]

Chapter 4 Effect Modification的更多相关文章

  1. Chapter 15 Outcome Regression and Propensity Scores

    目录 15.1 Outcome regression 15.2 Propensity scores 15.3 Propensity stratification and standardization ...

  2. Chapter 12 IP Weighting and Marginal Structural Model

    目录 12.1 The causal question 12.2 Estimating IP weights via modeling 12.3 Stabilized IP weights 12.4 ...

  3. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  4. 《SQL Server 2012 T-SQL基础》读书笔记 - 8.数据修改

    Chapter 8 Data Modification SQL Server 2008开始,支持一个语句中插入多行: INSERT INTO dbo.Orders (orderid, orderdat ...

  5. DML_The OUTPUT Clause

    DML_The OUTPUT Clause /**/ ------------------------------------------------------------------------- ...

  6. Chapter Data Modification & Chapter Data Validation

    Chapter Data Modification XF的数据提交,支持单行.集合和多层次的master-details结构的数据. Create 当提交如下数据 <Job> <Id ...

  7. Chapter 6 - How to Play Music and Sound Effect

    In this chapter, we would add background music to the game and play sound effect when the hero fires ...

  8. thinkphp5中Indirect modification of overloaded element of XXX has no effect的解决办法

    最近在使用Thinkphp5做foreach循环嵌套的时候报错:Indirect modification of overloaded element of XXX has no effect,网上搜 ...

  9. Chapter 1 A Definition of Causal Effect

    目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...

随机推荐

  1. YARP+AgileConfig 5分钟实现一个支持配置热更新的代理网关

    YARP 是微软开源的一个反向代理项目,英文名叫 Yet Another Reverse Proxy .所谓反向代理最有名的那就是 nginx 了,没错 YARP 也可以用来完成 nginx 的大部分 ...

  2. Go Robot

    1 <html> 2 <meta http-equiv="Content-Type" content="text/html; charset=utf-8 ...

  3. hadoop/spark面试题

    总结于网络 转自:https://www.cnblogs.com/jchubby/p/5449379.html 1.简答说一下hadoop的map-reduce编程模型 首先map task会从本地文 ...

  4. 生成接口文档并同步到postman

    前言 当我们开发需要测试接口时,会遇到以下几个问题 1.如果接口过多,参数过多,一个个参数复制到postman简直能要了我的狗命,重复劳动过多. 2.如果接口过多,参数过多,编写接口文档给测试人员或者 ...

  5. spring mvc idea创建

    创建项目 创建项目 --> Spring --> Spring MVC --> 下面选择Download,会显示Spring MVC-5版本 如果是首次使用IDEA,因为没有配置ma ...

  6. 使用AOP思想实现日志的添加

    //1.创建日志表syslog------->创建日志的实体类--------->在web.xml中配置监听 <listener>     <listener-class ...

  7. Java SPI机制,你了解过吗?

    Life moves pretty fast,if you don't stop and look around once in a while,you will miss it 为什么需要SPI? ...

  8. collection库更新1.4.0版本

    collection库更新1.4.0版本 collection库一直在使用中,周末集合github上的反馈以及contributor的修改,更新了1.4.0版本. 这个版本做了几个事情: 增加了三种类 ...

  9. Jenkins分布式与并行

    目录 一.简介 二.agent 通过JNLP协议增加agent 通过Swarm插件增加agent agent部分详解 三.agent放入Docker 使用Docker 配置Docker私有仓库 四.并 ...

  10. ciscn_2019_n_8 1

    拿到题目老样子先判断是多少位的程序 可以看到是32位的程序,然后再查看开启的保护 然后将程序放入ida进行汇编 先shift+f12查看程序是否有system和binsh 可以看到有system和bi ...