Chapter 4 Effect Modification
4.1 Definition of effect modification
什么是 effect modification, 即causal effect在不同因素\(V\)下不同, 即
\not =
\mathbb{E} [Y^{a=1} - Y^{a=0}|V=0],
\]
或者
\mathbb{E} [Y^{a=1}|V=1]
}{
\mathbb{E} [Y^{a=0}|V=1]
}
\not =
\frac{
\mathbb{E} [Y^{a=1}|V=0]
}{
\mathbb{E} [Y^{a=0}|V=0]
}.
\]
也就是说\(V\)这个因素会影响causal effect, 或许变好或许变差.
另外需要一提的是, additive effective modification 或许和 multiplicative effect modification 有偏差.
有可能前者显示\(V\)是一个effect modifier, 但是后者显示它不是.
所以一个因素是否是effect modifier还得依赖你所选的衡量指标.
4.2 Stratification to identify effect modification
\mathrm{Pr} [Y=1|A=1,V=1] - \mathrm{Pr} [Y=1|A=0,V=1], \\
\]
4.3 Why care about effect modification
可迁移性
4.4 Stratification as a form of adjustment
通过\(V\)将整个数据集分成子集, 并对每个子集计算相应的casual effect.
当然, 在此过程中我们往往也是需要条件可交换性的.
4.5 Matching as another form of adjustment
通过随机选择, 使得在不同子集中, 所关心元素的数量是一致的.
比如根据\(A\)划分treated 和 untreated, 通过随机选择使得\(L=l\)在两个子集中的数目是一样的.
此时,
\mathrm{Pr}[Y^{a=1}]
& = \sum_l \mathrm{Pr} [Y^{a=1}|L=l] \mathrm{Pr}[L=l] \\
& = p \sum_l \mathrm{Pr} [Y|A=1,L=l] \\
& = \frac{1}{\mathrm{Pr}[A=1]} \sum_l \mathrm{Pr} [Y,A=1,L=l] \\
& = \mathrm{Pr} [Y|A=1]
\end{array}
\]
此时, 计算causal effect只需考虑\(\mathrm{Pr}[Y|A=a]\)即可.
4.6 Effect modification and adjustment methods
Standard, IP weighting, stratification, matching这几个方法的比较.
Fine Point
Effect in the treated
\not =
\mathrm{Pr} [Y^{a=0}=1|A=1].
\]
Transportability
Collapsibility and the odds ratio
Technical Point
Computing the effect in the treated
计算\(\mathbb{E}[Y^a|A=a']\)只需要部分可交换性\(Y^a \amalg A|L\)即可.
Standard:
\]
IP weighting:
\mathbb{E}[
\frac{I(A=a)Y}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}
{
\mathbb{E}[
\frac{I(A=a)}{f(A|L)}
\mathrm{Pr}[A=a'|L]
]
}.
\]
注: 分母实际上是\(\mathrm{Pr}[A=a']\).
Pooling of stratum-specific effect measures
Relation between marginal and conditional risk ratios
/
\mathrm{Pr} [Y^{a=0}=0] =
\sum_l
\frac{
\mathrm{Pr} [Y^{a=1}=1| L=l]
}
{
\mathrm{Pj} [Y^{a=0}=1|L=l]
}
w(l).
\]
其中,
=
\frac{
\mathrm{Pr} [Y^{a=0}=1, L=l]
}
{
\mathrm{Pr} [Y^{a=0}=1]
}, \quad
\sum_l w(l)=1.
\]
Chapter 4 Effect Modification的更多相关文章
- Chapter 15 Outcome Regression and Propensity Scores
目录 15.1 Outcome regression 15.2 Propensity scores 15.3 Propensity stratification and standardization ...
- Chapter 12 IP Weighting and Marginal Structural Model
目录 12.1 The causal question 12.2 Estimating IP weights via modeling 12.3 Stabilized IP weights 12.4 ...
- Chapter 6 Graphical Representation of Causal Effects
目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...
- 《SQL Server 2012 T-SQL基础》读书笔记 - 8.数据修改
Chapter 8 Data Modification SQL Server 2008开始,支持一个语句中插入多行: INSERT INTO dbo.Orders (orderid, orderdat ...
- DML_The OUTPUT Clause
DML_The OUTPUT Clause /**/ ------------------------------------------------------------------------- ...
- Chapter Data Modification & Chapter Data Validation
Chapter Data Modification XF的数据提交,支持单行.集合和多层次的master-details结构的数据. Create 当提交如下数据 <Job> <Id ...
- Chapter 6 - How to Play Music and Sound Effect
In this chapter, we would add background music to the game and play sound effect when the hero fires ...
- thinkphp5中Indirect modification of overloaded element of XXX has no effect的解决办法
最近在使用Thinkphp5做foreach循环嵌套的时候报错:Indirect modification of overloaded element of XXX has no effect,网上搜 ...
- Chapter 1 A Definition of Causal Effect
目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...
随机推荐
- js中!!的妙用
0.-0.null."".false.undefined 或者 NaN转化为false,其他为true
- [转] Java中对数据进行加密的几种方法
加密算法有很多种:这里只大约列举几例: 1:消息摘要:(数字指纹):既对一个任意长度的一个数据块进行计算,产生一个唯一指纹.MD5/SHA1发送给其他人你的信息和摘要,其他人用相同的加密方法得到摘要, ...
- Git的使用-一个分支完全替换另一个分支
之前公司git分支混乱,今天花时间整理了一下,在合并分支的时候遇到一个问题: 一个很久没有拉取远程代码的分支与master分支合并时,出现冲突之外,还会丢失文件,很头疼,然后找到了下面的方法,可以直接 ...
- android转换透明度
比方说 70% 白色透明度. 就用255*0.7=185.5 在把185.5转换成16进制就是B2 你只需要写#B2FFFFFF 如果是黑色就换成6个0就可以了.前2位是控制透明度的.
- Spring Cloud Eureka源码分析之服务注册的流程与数据存储设计!
Spring Cloud是一个生态,它提供了一套标准,这套标准可以通过不同的组件来实现,其中就包含服务注册/发现.熔断.负载均衡等,在spring-cloud-common这个包中,org.sprin ...
- [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC
[源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 目录 [源码解析] PyTorch 分布式(16) --- 使用异步执行实现批处理 RPC 0x00 摘要 0x0 ...
- [BUUCTF]PWN——jarvisoj_test_your_memory
jarvisoj_test_your_memory 附件 步骤: 例行检查,32位程序,开启了nx保护 试运行一下程序,看看大概的情况 32位ida打开,习惯性的检索程序里的字符串,看到了有关flag ...
- CF166A Rank List 题解
Content 有 \(n\) 个元素,第 \(i\) 个元素包含两个值 \(a_i,b_i\),按照以下规则排序: 如果对于 \(i\neq j\) 有 \(a_i\neq a_j\),则按照 \( ...
- 系统丢包net.netfilter.nf_conntrack_max 超限查看
sysctl net.netfilter.nf_conntrack_max 查看限制 sysctl net.netfilter.nf_conntrack_count 查看当前是否超限 echo n ...
- mongodb 连接方式之mongo-shell
单机连接:mongo 120.131.0.64:27017 -u root -p KingSoft@1314 --authenticationDatabase admin 字符串连接 python i ...