3rd S-curve velocity profile
3rd S-curve
(1)
(2)
(3)
(4)
完整的三次S曲线包括上面的七个阶段。前面三个阶段为加速阶段,从初始速度Vs加速到Vmax:
(5)
整个加速阶段的位移为:
(6)
后面三个阶段为减速阶段:
(7)
(8)
也可以看作为反向加速阶段,即速度从最终速度Ve加速到Vmax:
(9)
(10)
中间的阶段为匀速阶段:
(11)
但是在实际中,受限于Vs,Ve,以及位移L,整条速度曲线并不包含完整的七个阶段,通常Jerka = Jerkd = Jerk。那么求速度曲线可以转换为以下数学问题:已知Vs,Ve,L,Amax,Jerk,Fmax,求解下面的四元三次方程组:
(12)
其中,Sa和Sd分别由式(6)和(10)计算,并且需要满足以下限制条件:
(13)
这是一个非齐次的非线性的方程组。四个未知数,但是只有两个方程以及一些限制条件。给定初值然后利用迭代法计算也许是求解的一种途径。在设定初值上,可以分情况进行讨论。流程图如下图所示。
首先使用Vs,Ve,Fmax,Amax,Jerk的值计算T1,T2,T5,T6。计算过程中先假设T2=0,计算速度从Vs达到Fmax所需的时间T1,如果T1<Amax/Jerk,则没有上面的第二个阶段,即加速度匀速的阶段。如果T1>Amax/Jerk,则T1会受到最大加速度的限制,即T1=Amax/Jerk,T2=(Fmax-Vs)/(Jerk*T1)-T1,并且根据T1,T2通过式(6)可以计算出加速阶段的位移Sa。同理可以计算出T5,T6和Sd。
如果Sa+Sd>=L,则说明最大速度可以保持匀速一段时间T4,T4=(L-Sa-Sd)/Fmax
如果Sa+Sd<L,则说明T4=0,且整条速度曲线的峰值达不到最大速度Fmax。因此问题转换为如下的数学问题:
(14)
求T1,T2,T5,T6。
当Vs=Ve时,T1=T5,T2=T6,则求解式(14)就变成求解式(15)的解:
(15)
也是先假设T2=0,则式(15)是一个关于未知数T1的一元三次方程,且因其判别式大于零,其有唯一解。因此可以求得T1。若T1<Amax/Jerk,则T2=0,若T1>Amax/Jerk,则T1=Amax/Jerk,然后再通过式(15)计算T2。
当Vs≠Ve时,方程组有四个未知数,求不到其唯一解。因此本文中采用的是Python.scipy库中的求最小值的问题来计算T1,T2,T5,T6。即解决如下数学问题:
求T=[T1,T2,T5,T6],使得
(16)
值最小,其中,Vmax=Vs+J*T1*(T1+T2)。并满足如下的条件:
(17)
下面为这段python代码:
import numpy as np
from scipy.optimize import minimize
import math def motion_profile(args):
vs,J,Fmax,L,t = args
s=lambda x: (vs*t*(2*x[0]+x[1])+J*x[0]*math.pow(t,3)*(2*x[0]+x[1])*(x[0]+x[1])+(vs+J*x[0]*math.pow(t,2)*(x[0]+x[1]))*(2*x[2]+x[3])*t-J*x[2]*math.pow(t,3)*(2*x[2]+x[3])*(x[2]+x[3])-L)**2
return s def cons(args):
Fmax,ve,Amax,J,vs,t = args
cons = ({'type':'ineq',
'fun':lambda x:np.array([Amax/J - x[0]*t,
x[0],
x[1],
x[2],
x[3],
Amax/J - x[2]*t,
ve-vs-J*(x[0]*t)**2 -J*x[0]*t*x[1]*t + J*x[2]*t*x[3]*t + J*(x[2]*t)**2,
Fmax-ve-J*x[2]*math.pow(t,2)*(x[2]+x[3]),
vs + J*(x[0]*t)**2 + J*x[0]*t*x[1]*t - J*x[2]*t*x[3]*t -J*(x[2]*t)**2])})
return cons def optimization(args,args1,x0):
conditions = cons(args1)
res = minimize(motion_profile(args),x0,method='SLSQP',constraints = conditions) time_list = []
time_list.append(res.x[0])
time_list.append(res.x[1])
time_list.append(res.x[2])
time_list.append(res.x[3])
return time_list
整个代码可以见github:
https://github.com/Larissa1990/S-curve-Velocity-Profile
Example1:
Vs=40,Ve=35,Fmax=80,Amax=2000,Jerk=80000,L=5,interpolation_period=0.002
T1=0.022,T2=0,T4=0,T5=0.016,T6=0.02
Example2:
Vs=35,Ve=35,Fmax=80,Amax=2000,Jerk=80000,L=5,interpolation_period=0.002
T1=0.024,T2=0,T4=0,T5=0.024,T6=0
3rd S-curve velocity profile的更多相关文章
- an concreate example
Step 1: Creating Parts 1. Split the geometry 2. Create the INLET part. 3. Create the OUTLET part. 4. ...
- ansys 有限元自学手册
李兵.人邮2013.4 实体模型 –> 修正后划分 有限元网格 offset WP 偏移工作平面 模型的建立 将cT轮廓曲线 提取出来输入三维造型软件进行建模的方法,这种方法由于要对 ...
- ICEM相关
1,几何体建模不用讲(可以不学,因为通常是其他软件导入)在初始分块前,建立part,为建立边界条件使用(这是部分的定义最重要的作用,所以你可以按照不同的情况来定义,划分网格只是块的工作),所以对于三维 ...
- Disposable microfluidic devices: fabrication, function, and application Gina S. Fiorini and Daniel T
Disposable microfluidic devices: fabrication, function, and application Gina S. Fiorini and Daniel T ...
- 机器人关节空间轨迹规划--S型速度规划
关节空间 VS 操作空间 关节空间与操作空间轨迹规划流程图如下(上标$i$和$f$分别代表起始位置initial和目标位置final): 在关节空间内进行轨迹规划有如下优点: 在线运算量更小,即无需进 ...
- 机器人中的轨迹规划(Trajectory Planning )
Figure. Several possible path shapes for a single joint 五次多项式曲线(quintic polynomial) $$\theta(t)=a_0+ ...
- 使用yocs_velocity_smoother对机器人速度进行限制
yocs_velocity_smoother是一个速度.加速度限制器,用来防止robot navigation的速度/转速过快,加速度/快减速过大.Bound incoming velocity me ...
- AN2820 Driving bipolar stepper motors using a medium-density STM32F103xx microcontroller
AN2820 Driving bipolar stepper motors using a medium-density STM32F103xx microcontroller Introductio ...
- post processing in CFD
post post Table of Contents 1. Post-processing 1.1. Reverse flow 1.1.1. reasons 1.1.2. solutions 1.2 ...
随机推荐
- AOP操作-准备工作
AOP操作(准备) 1,Spring 框架中一般基于 AspectJ 实现AOP操作 (1)什么是 AspectJ *AspectJ 不是 Spring 组成部分,独立AOP框架,一般把 Aspect ...
- ddos攻击是什么,如何防御
DDoS(Distributed Denial of Service,分布式拒绝服务) 定义: 主要通过大量合法的请求占用大量网络资源,从而使合法用户无法得到服务的响应,是目前最强大.最难防御的攻击之 ...
- 在 Prim 算法中使用 pb_ds 堆优化
在 Prim 算法中使用 pb_ds 堆优化 Prim 算法用于求最小生成树(Minimum Spanning Tree,简称 MST),其本质是一种贪心的加点法.对于一个各点相互连通的无向图而言,P ...
- 常见线程池 newScheduledThreadPool 定时执行任务的线程池 简单介绍
一 定时任务 package com.aaa.threaddemo; import static java.util.concurrent.TimeUnit.NANOSECONDS; import ...
- Understanding C++ Modules In C++20 (2)
Compiling evironment: linux (ubuntu 16.04)+ gcc-10.2. The post will focus on using export,import,vis ...
- ApacheCN 计算机视觉译文集 20210203 更新
新增了五个教程: OpenCV3 和 Qt5 计算机视觉 零.前言 一.OpenCV 和 Qt 简介 二.创建我们的第一个 Qt 和 OpenCV 项目 三.创建一个全面的 Qt + OpenCV 项 ...
- 【h5游戏开发】egret引擎p2物理引擎 - 小球碰撞地面搞笑的物理现象
重力的方向和地面的问题 p2中默认的方向是从上到下,如果重力默认是正数的话,物体放到世界中是会从上面往下面飘的 p2中plane地面默认的方向是y轴的方向,而在p2中y轴的方向默认是从上往下 首先来看 ...
- C3P0数据库连接池数据库插入中文乱码问题解决
问题描述 近期修改一个学生信息管理的JavaWeb项目,其数据库连接池使用了C3P0.在实际测试时,发现在学生信息模块添加中文学生信息会在数据库(MySQL)出现中文乱码问题. 如图所示: 问题分析 ...
- 浅谈VPC (转)
来源于知乎:https://zhuanlan.zhihu.com/p/33658624 VPC全称是Virtual Private Cloud,翻译成中文是虚拟私有云.但是在有些场合也被翻译成私有网络 ...
- bom-删除提示
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...