欢迎访问我的GitHub

https://github.com/zq2599/blog_demos

内容:所有原创文章分类汇总及配套源码,涉及Java、Docker、Kubernetes、DevOPS等;

本文概览

  1. 减少铺垫,长话短说,本文作用是辅助理解Process Function的定时器,仅通过几个关键点把定时器逻辑说清楚,因此文章很短;
  2. Flink官方有篇文章是讲Process Function的,地址是:https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/process_function.html
  3. 这篇文章中给出一个demo,里面用了定时器,核心代码如下图:



4. 建议您先把上述官方代码看一遍,这样再看过下面几个关键点,就能熟练使用此定时器了;

定时器的几个关键点

  1. 下图红框中的registerEventTimeTimer方法只要执行了,则蓝框中的onTimer方法就会执行(之前曾天真的猜测第二次registerEventTimeTimer会覆盖掉第一次注册的timer,但实际上,只要registerEventTimeTimer的入参不同,就不会覆盖):

  1. 如下图,onTime方法执行时,timestamp的值是之前registerEventTimeTimer的入参:

  1. 最后一点也是最关键的一点:每次执行processElement都会修改state,所以,每次onTimer执行的时候,拿到的state都是最近一次processElement中写入的值,因此,假设processElement执行10次,onTimer也会执行10次,但下图红框中的判断只有最后一次等于ture,因为每次判断时,左边的timestamp都是不同的processElement产生的,但右边的result.lastModified却是同一个(最后一次processElement中写入的):

举例说明

第一次执行processElement,时间是12:01:01,因此state中记录的是12:01:01,registerEventTimeTimer入参就是12:11:01(这就是第一个onTimer的timestamp入参)

第二次执行processElement,时间是12:01:05,因此state中记录的是12:01:05,registerEventTimeTimer入参就是12:11:05(这就是第二个onTimer的timestamp入参)

第一个onTimer执行,timestamp是12:11:01,取得state是12:01:05,因此timestamp == result.lastModified + 60000判断为false(12:11:01不等于12:11:05)

第二个onTimer执行,timestamp是12:11:05,取得state是12:01:05,因此timestamp == result.lastModified + 60000判断为false(12:11:05等于12:11:05)

你不孤单,欣宸原创一路相伴

  1. Java系列
  2. Spring系列
  3. Docker系列
  4. kubernetes系列
  5. 数据库+中间件系列
  6. DevOps系列

欢迎关注公众号:程序员欣宸

微信搜索「程序员欣宸」,我是欣宸,期待与您一同畅游Java世界...

https://github.com/zq2599/blog_demos

理解ProcessFunction的Timer逻辑的更多相关文章

  1. 图解 CSS: 理解样式表的逻辑(转载)

    原文:http://www.cnblogs.com/del/archive/2009/02/01/1382141.html 样式表可以是外部的.内联的或嵌入的; 链接外部样式文件一般是:<lin ...

  2. 如何理解 Python 的赋值逻辑

    摘要: 如果你学过 C 语言,那么当你初见 Python 时可能会觉得 Python 的赋值方式略有诡异:好像差不多,但又好像哪里有点不太对劲. 本文比较并解释了这种赋值逻辑上的差异.回答了为什么需要 ...

  3. 简单理解java中timer的schedule和scheduleAtFixedRate方法的区别

    timer的schedule和scheduleAtFixedRate方法一般情况下是没什么区别的,只在某个情况出现时会有区别--当前任务没有来得及完成下次任务又交到手上. 我们来举个例子: 暑假到了老 ...

  4. CoProcessFunction实战三部曲之三:定时器和侧输出

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  5. 浅谈Js原型的理解

    一.js中的原型毫无疑问一个难点,学习如果不深入很容易就晕了!    在参考了多方面的资料后,发现解释都太过专业,对于很多还没有接触过面向对象    语言的小白来说,有理解不了里面的专有名词!如果你没 ...

  6. Remoting 的“传递的引用”理解

    WCf是集大成者,具有其他微软的很多技术,其中分布式上很多借助于Remoting,所以研究一下Remoting有助于理解WCF 提到Remoting就不得不涉及到MarshalByRefObject这 ...

  7. SpringMVC:学习笔记(1)——理解MVC及快速入门

    SprigMVC-理解MVC及快速入门 说明: 传统MVC-->JSPModel2-->Front Controller + Application Controller + Page C ...

  8. 掀起Azure AD的盖头来——深入理解Microsoft Graph应用程序和服务权限声明

    作者:陈希章 发表于 2017年7月12日 引子 这是一篇计划外的文章.我们都知道要进行Microsoft Graph的开发的话,需要进行应用程序注册.这个在此前我已经有专门的文章写过了.但这里存在一 ...

  9. JAVA个人理解

    为了找到别人写的好文章,先分享下自己的知识,找找感觉路线. 学java前接触的c,后来转向java.第一个照面理解的就是面向对象,没想到让我想了好多年.当时有个负责任的老师说面向对象这个词具体释义众说 ...

随机推荐

  1. 目录和文件 按创建时间排序du -h --time --max-depth=1 . |sort -r -t $'\t' -k 2 Linux查看文件夹大小,并按文件夹创建时间排序

    目录和文件 按创建时间排序 # du -h --time --max-depth=1 . |sort -r -t $'\t' -k 230M 2020-04-01 14:54 .28K 2020-04 ...

  2. Linux_yum命令详解

    一.yum命令语法 yum [options] [command] [package ...] 二.yum命令常用的选项: yum options -y //自动回答为"yes" ...

  3. 033.Python的__del__析构方法he__call__方法

    一 __del__ 魔术方法(析构方法) 1.1 介绍 触发时机:当对象被内存回收的时候自动触发[1.页面执行完毕回收所有变量 2.所有对象被del的时候] 功能:对象使用完毕后资源回收 参数:一个s ...

  4. centos下安装visual studio code-(来自官网)

    (https://code.visualstudio.com/docs/setup/linux) Running VS Code on Linux Installation 安装完成后可执行:$cod ...

  5. python3 使用random函数批量产生注册邮箱

    '''你是一个高级测试工程师,现在要做性能测试,需要你写一个函数,批量生成一些注册使用的账号. 1.产生的账号是以@163.com结尾,长度由用户输,产生多少条也由用户输入,2.用户名不能重复,用户名 ...

  6. xxl-job使用遇到的问题(二)

    xxl-job使用遇到的问题(二) 关联阅读 xxl-job使用遇到的问题(一) 1.问题现象 最近有个老定时任务迁移到xxl-job的时候,遇到一个小问题.虽然很快解决,但是还是有必要记录一下~ j ...

  7. Qt开发笔记:OpenSSL库介绍、windows上mingw32版本的OpenSSL编译模块化

    前言   Windows上mingw32版本的openssl的编译是属于比较棘手的,OpenSSL本身不提供支持..   OpenSSL 介绍   OpenSSL是一个开放源代码的软件库包,应用程序可 ...

  8. uboot通过NFS挂载ubuntu根文件系统

    由于工作需要,在做app开发或系统移植时,经常需要编辑系统后重新烧写异常麻烦.通过NFS挂载根文件系统就不需要每次更改系统后再进行编译和烧写,等开发完成后一次烧写即可完成. 一.准备材料 可以根据自己 ...

  9. TensorRT-优化-原理

    TensorRT-优化-原理 一.优化方式 TentsorRT 优化方式: TensorRT优化方法主要有以下几种方式,最主要的是前面两种. 层间融合或张量融合(Layer & Tensor ...

  10. TensorRT 数据和表格示例

    TensorRT 数据和表格示例 TensorRT 7.1在绑定索引方面比其前身更加严格.以前,允许错误配置文件的绑定索引.考虑一个网络,该网络具有四个输入,一个输出,以及在其中的三个优化配置文件 I ...