详解 MD5 信息摘要算法
对于软件研发人员来说 MD5 不是一个陌生的词汇,平时的软件研发中,经常使用 MD5 校验消息是否被篡改、验证文件完整性,甚至将MD5当作加密算法使用。
MD5虽不陌生,但不是所有研发人员都了解其算法原理,通过这篇文章详细学习MD5 摘要算法。
- 认识 MD5
- 掌握 MD5 算法原理
- 编码实现 MD5 摘要算法
使用Java开发语言 编码实现MD5摘要算法。
一、认识MD5
MD5(Message Digest Algorithm 5)中文名为消息摘要算法第五版
,是计算机安全领域广泛使用的一种散列函数
,用以提供消息
的完整性保护
。
MD5作为一种常用的摘要算法(或指纹算法),其具有以下几个重要的特点(个人观点):
- 输入任意长度信息,输出长度固定:
MD5 可输入任意长度的信息
,其输出均为128位(bit)
固定长度的二进制数据
。 - 运算速度快:
MD5的运算均为32位 与、或、非、位移等位运算
,因此其运算速率快,几乎不消耗CPU时间。 - 不可逆:
根据
MD5的的散列结果
,无法计算
出原始数据
(查字典除外)。 - 碰撞性:
原始数据
与其MD5散列结果
并非一一对应
,存在多个原始数据
的MD5结果相同的可能性
。 - 不安全:
2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。
1.1 长度
日常软件研发中 MD5
计算结果一般为长度为32的字符串
,偶尔也会遇到长度为16的字符串
。那么,MD5到底是多长的字符串?
MD5散列结果是128位(bit)
固定长度的二进制数据
,也就是128个0/1
的二进数据。
用128位二进制数据
呈现MD5的散列结果
,对于软件开发者很不友好
。
一般将二进制
转成16进制
,每4个二进制数据
转化为一个16进制数据
,128位二进制数据
转化为32个十六进制数据
(128/4 = 32
),最终以字符串形式
呈现十六进制数据后则为长度为32的字符串
。
8位二进制数据,转化为2个十六进制数据举例如下:
// 8位二进制 ——> 2个十六进制数据
// 二进制数据
0100 0101
// 对应的 十六制数据
4 5
为什么网上还有16位MD5散列结果呢?
这里以 Message Digest Algorithm 作为原始数据,分别计算其32位
与16位
的散列结果:
// 32位散列结果
MD5(Message Digest Algorithm,32) = e4b0190b2fadc0adbe54471ffd79a729
// 16位散列结果
MD5(Message Digest Algorithm,16) = 2fadc0adbe54471f
仔细观察以上两个散列结果
,发现其中间部分完全相同
均为2fadc0adbe54471f
。
因此猜测16位长度的散列结果为:32位散列结果去掉前八位、后八位得到的。
1.2 用途
平时的软件研发中经常使用MD5校验消息是否被篡改、验证文件完整性。
- 验证是否被篡改:
比如,上传下载文件。
数据的 发送方 将原始数据生成MD5摘要,然后把 原始数据 与其 MD5摘要一起发送给 接收方;
接收方收到数据后,先将原始数据用MD5算法生成摘要信息,然后再将此摘要信息与发送方发过来的摘要信息进行比较,如果一致就认为原始数据没有被修改、或者损坏。 - 防止抵赖:
例如A写了一个文件,某认证机构对此文件用MD5算法产生摘要信息并做好记录。
若以后A说这文件不是他写的,权威机构只需对此文件重新产生摘要信息,然后跟记录在册的摘要信息进行比对,若摘要信息相同,则证明为A写的文件。
1.3 不安全
2011年,RFC 6151 禁止MD5用作密钥散列消息认证码。
- MD5不安全主要指的是,
不可
再用MD5对原始秘钥进行加密
:
比如:将用户的登录秘钥进行MD5加密后,存储于数据库中。
MD5虽然理论上不可逆,但有些黑客网站通过查字典
方式获取MD5原文信息。
提前将一些比较常见的密文做MD5运算,将结果保存下来,破译密文时,通过MD5摘要信息直接查询原文。
比如:字符串123
的MD5值是 202cb962ac59075b964b07152d234b70 ,黑客在破解后的数据库中看到某位用户的密码是 202cb962ac59075b964b07152d234b70 ,通过字典一查就知道密码明文是 123 了。 - MD5的碰撞性,决定了存在两个不用的输入信息,其MD5相同的可能。
2009年,中国科学院的谢涛和冯登国仅用了 2的20.96次幂 的碰撞算法复杂度,破解了MD5的碰撞抵抗,该攻击在普通计算机上运行只需要数秒钟。
二、算法原理
MD5 摘要算法大概计算过程可以描述如下:
MD5 将 “输入信息” 分为N*512bit
的数据分组;
每一512bit
分组又分为16个
子分组,每个子分组为32bit
的原始数据;
16
个子分组分别命名为 M0~M15
;
每个子分组都要进行4
次运算,运算公式分别为FF、GG、HH、II;
总的运算次数为N*16*4
(运算均为位运算)。
“输入信息” 分组计算情况如下图所示:
以上为MD5 摘要算法的大概原理总结,下边按照 rfc1321 中算法的介绍顺序,梳理MD5 摘要算法:
- 填充数据
填充数据,使输入数据 % 512 = 448
- 填充长度信息
补充 “输入信息” 位长 (Bits Length)信息,占用空间64位 - 初始化A、B、C、D 四个数据
初始化 A、B、C、D 四个数据,用于后续的分组计算 - 分组数据运算
512bit
分组数据,需进行16 * 4 = 64
次运算 - 结果累加
2.1 填充数据
首先需要对 “输入信息” 进行填充,使其位长对512求余
的结果
为448
(填充必须进行,即使其位长对512求余的结果等于448)。
填充数据的方式:
在 “输入信息” 的后面填充一个1和无数个0,直到满足上面的条件时才停止信息填充
。
填充后的 “输入信息” 其位长 (Bits Length) 将扩展到:
N*512+448
( N>=0 )
2.2 补充长度信息
用64bit
记录 “输入信息” 的位长 (Bits Length),把64位长度二进制数据补在最后。
经过此步骤后,其位长 (Bits Length) 将扩展到:
N*512+448+64 = (N+1)*512
( N>=0 )
2.3 初始化A、B、C、D
这里需要初始化四个数据 A、B、C、D,这四个变量将用于后续的公式计算。
四个数据均为8
个16进制数据组合,每个16进制数据为4bit
,每个数据占32bit
。
// 每个数据占空间 32bit
// 四个数据分别为 8个 16进制数据的组合构成
// 单个16进制数据占空间 4bit
A: 01 23 45 67 (16进制)
B: 89 ab cd ef (16进制)
C: fe dc ba 98 (16进制)
D: 76 54 32 10 (16进制)
将A、B、C、D输入计算机进行计算时,A、B、C、D将变化为:
A: 0x67452301
B: 0xefcdab89
C: 0x98badcfe
D: 0x10325476
为什么会变化为 0x67452301、0xefcdab89、0x98badcfe、0x10325476 ?
// A的16进制表示
A: 01 23 45 67 (16进制)
// A的二进制表示
A: 00000 0001 0010 0011 0100 0101 0110 0111 (二进制)
// 计算机中首先编写的为低字节位,当从右向左获取字节数据(8位一个字节)时,最终A将变化为0x67452301
A: 67 45 23 01 (16进制)
2.4 分组数据运算
上文层提到子分组的运算公式:FF、GG、HH、II ,32bit子分组
的运算公式
如下:
// FF、GG、HH、II
// <<< 为循环左移
FF(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + F(b,c,d) + Mj + ti) <<< s)
GG(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + G(b,c,d) + Mj + ti) <<< s)
HH(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + H(b,c,d) + Mj + ti) <<< s)
II(a ,b ,c ,d ,Mj ,s ,ti) 操作为 a = b + ( (a + I(b,c,d) + Mj + ti) <<< s)
// F、G、H、I
F( X ,Y ,Z ) = ( X & Y ) | ( (~X) & Z )
G( X ,Y ,Z ) = ( X & Z ) | ( Y & (~Z) )
H( X ,Y ,Z ) =X ^ Y ^ Z
I( X ,Y ,Z ) =Y ^ ( X | (~Z) )
- 公式中初始输入数据a、b、c、d 为A、B、C、D
- Mj 代表32bit子分组数据,每个子分组数据均需要经过 FF、GG、HH、II 四次运算:
512bit原始输入数据,有16个子分组,每个分组进行4次运算,总共16 * 4 = 64次运算。 - s 常量数据,代表循环左移的位数。
- ti 常量;
512bit分组数据,64 次位运算如下(输入数据为32bit原始数据,输出为32bit数据):
// 512bit分组数据,16 * 4 次运算
// 输入数据为32bit原始数据,输出为32bit数据
// 第一次运算FF
a = FF(a, b, c, d, M0, 7, 0xd76aa478L);
d = FF(d, a, b, c, M1, 12, 0xe8c7b756L);
c = FF(c, d, a, b, M2, 17, 0x242070dbL);
b = FF(b, c, d, a, M3, 22, 0xc1bdceeeL);
a = FF(a, b, c, d, M4, 7, 0xf57c0fafL);
d = FF(d, a, b, c, M5, 12, 0x4787c62aL);
c = FF(c, d, a, b, M6, 17, 0xa8304613L);
b = FF(b, c, d, a, M7, 22, 0xfd469501L);
a = FF(a, b, c, d, M8, 7, 0x698098d8L);
d = FF(d, a, b, c, M9, 12, 0x8b44f7afL);
c = FF(c, d, a, b, M10, 17, 0xffff5bb1L);
b = FF(b, c, d, a, M11, 22, 0x895cd7beL);
a = FF(a, b, c, d, M12, 7, 0x6b901122L);
d = FF(d, a, b, c, M13, 12, 0xfd987193L);
c = FF(c, d, a, b, M14, 17, 0xa679438eL);
b = FF(b, c, d, a, M15, 22, 0x49b40821L);
// 第二轮运算GG
a = GG(a, b, c, d, M1, 5, 0xf61e2562L);
d = GG(d, a, b, c, M6, 9, 0xc040b340L);
c = GG(c, d, a, b, M11, 14, 0x265e5a51L);
b = GG(b, c, d, a, M0, 20, 0xe9b6c7aaL);
a = GG(a, b, c, d, M5, 5, 0xd62f105dL);
d = GG(d, a, b, c, M10, 9, 0x2441453L);
c = GG(c, d, a, b, M15, 14, 0xd8a1e681L);
b = GG(b, c, d, a, M4, 20, 0xe7d3fbc8L);
a = GG(a, b, c, d, M9, 5, 0x21e1cde6L);
d = GG(d, a, b, c, M14, 9, 0xc33707d6L);
c = GG(c, d, a, b, M3, 14, 0xf4d50d87L);
b = GG(b, c, d, a, M8, 20, 0x455a14edL);
a = GG(a, b, c, d, M13, 5, 0xa9e3e905L);
d = GG(d, a, b, c, M2, 9, 0xfcefa3f8L);
c = GG(c, d, a, b, M7, 14, 0x676f02d9L);
b = GG(b, c, d, a, M12, 20, 0x8d2a4c8aL);
// 第三轮运算HH
a = HH(a, b, c, d, M5, 4, 0xfffa3942L);
d = HH(d, a, b, c, M8, 11, 0x8771f681L);
c = HH(c, d, a, b, M11, 16, 0x6d9d6122L);
b = HH(b, c, d, a, M14, 23, 0xfde5380cL);
a = HH(a, b, c, d, M1, 4, 0xa4beea44L);
d = HH(d, a, b, c, M4, 11, 0x4bdecfa9L);
c = HH(c, d, a, b, M7, 16, 0xf6bb4b60L);
b = HH(b, c, d, a, M10, 23, 0xbebfbc70L);
a = HH(a, b, c, d, M13, 4, 0x289b7ec6L);
d = HH(d, a, b, c, M0, 11, 0xeaa127faL);
c = HH(c, d, a, b, M3, 16, 0xd4ef3085L);
b = HH(b, c, d, a, M6, 23, 0x4881d05L);
a = HH(a, b, c, d, M9, 4, 0xd9d4d039L);
d = HH(d, a, b, c, M12, 11, 0xe6db99e5L);
c = HH(c, d, a, b, M15, 16, 0x1fa27cf8L);
b = HH(b, c, d, a, M2, 23, 0xc4ac5665L);
// 第四轮运算II
a = II(a, b, c, d, M0, 6, 0xf4292244L);
d = II(d, a, b, c, M7, 10, 0x432aff97L);
c = II(c, d, a, b, M14, 15, 0xab9423a7L);
b = II(b, c, d, a, M5, 21, 0xfc93a039L);
a = II(a, b, c, d, M12, 6, 0x655b59c3L);
d = II(d, a, b, c, M3, 10, 0x8f0ccc92L);
c = II(c, d, a, b, M10, 15, 0xffeff47dL);
b = II(b, c, d, a, M1, 21, 0x85845dd1L);
a = II(a, b, c, d, M8, 6, 0x6fa87e4fL);
d = II(d, a, b, c, M15, 10, 0xfe2ce6e0L);
c = II(c, d, a, b, M6, 15, 0xa3014314L);
b = II(b, c, d, a, M13, 21, 0x4e0811a1L);
a = II(a, b, c, d, M4, 6, 0xf7537e82L);
d = II(d, a, b, c, M11, 10, 0xbd3af235L);
c = II(c, d, a, b, M2, 15, 0x2ad7d2bbL);
b = II(b, c, d, a, M9, 21, 0xeb86d391L);
2.5 结果累加
若A、B、C、D为变量
,并且A、B、C、D的初始化信息为 A: 0x67452301;B: 0xefcdab89;C: 0x98badcfe;D: 0x10325476 ,每一512bit分组的运算结果为a、b、c、d
。则第N个512bit组的计算结果为:
// a、b、c、d 为每一512bit分组的运算结果;
// A、B、C、D 是下一组计算的输入参数;
// 若无下一个512bit分组 A、B、C、D 则为最终计算结果;
A = a + A;
B = b + B;
C = c + C;
D = d + D;
三、编码实现 MD5 摘要算法
网上找到一个用Java编码实现MD5摘要算法的案例,我从头到尾加了详细的注释。因此对于代码实现,朋友们可以结合注释读代码,打日志进行MD5摘要算法分析、学习。
/**
* Java 实现MD5摘要算法:
* 基本每一行我都加了注释,因此不再对代码进行详细介绍,
* 如有疑问,可联系:xiaxveliang@163.com
*/
public class MD5Hash {
/**
* RFC1321中定义的标准4*4矩阵的常量:循环位移常量数据 s
*/
static final int S11 = 7, S12 = 12, S13 = 17, S14 = 22;
static final int S21 = 5, S22 = 9, S23 = 14, S24 = 20;
static final int S31 = 4, S32 = 11, S33 = 16, S34 = 23;
static final int S41 = 6, S42 = 10, S43 = 15, S44 = 21;
/**
* 填充数据 1000 0000 0000 ...
* 长度:64*8 = 512bit
* 注:-128为1000 0000
*/
static final byte[] PADDING =
{
-128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0
};
/**
* a、b、c、d 四个变量
*/
private long[] abcd = new long[4];
/**
* 512字节分组数据缓冲 64*8=512bit
*/
private byte[] buffer512Bit = new byte[64];
// 输入数据的位长信息(64bit)
private long[] inputBitCount = new long[2];
/**
* MD5计算结果
*/
// MD5计算结果:16 * 8bit = 128bit
public byte[] md5ByteArray = new byte[16];
// MD5计算结果:字符串表示的MD5计算结果
public String md5ResultStr;
/**
* 调用其可对任意字符串进行加密运算,并以字符串形式返回加密结果。
*
* @param inputStr 输入字符串
* @return 输入md5计算结果
*/
public String getMD5(String inputStr) {
// 数据初始化A、B、C、D
md5Init();
// 调用MD5的主计算过程
md5Update(inputStr.getBytes(), inputStr.length());
// 输出结果到digest数组中
md5Final();
// 转化为16进制字符串
for (int i = 0; i < 16; i++) {
md5ResultStr += byte2HEX(md5ByteArray[i]);
}
return md5ResultStr;
}
// #######################################################
/**
* 构造方法:初始化MD5核心变量
*/
public MD5Hash() {
md5Init();
}
/**
* 初始化MD5核心变量
*/
private void md5Init() {
// 定义state为RFC1321中定义的标准幻数
abcd[0] = 0x67452301L;
abcd[1] = 0xefcdab89L;
abcd[2] = 0x98badcfeL;
abcd[3] = 0x10325476L;
// 初始化 输入数据的位长信息
inputBitCount[0] = inputBitCount[1] = 0L;
// MD5计算结果:初始化digest数组元素为0
for (int i = 0; i < 16; i++) {
md5ByteArray[i] = 0;
}
// MD5计算结果:初始化resultStr
md5ResultStr = "";
}
/**
* MD5的主计算过程:
*
* @param inputByte 输入数据字节流
* @param inputByteLen 输入数据字节长度
*/
private void md5Update(byte[] inputByte, int inputByteLen) {
int i, index, partLen;
// 分配64个字节分组缓冲区:64*8bit = 512bit
byte[] blockByteArray = new byte[64];
// 添加inputByte信息前输入信息 字节长度(取低6位)
index = (int) (inputBitCount[0] >>> 3) & 0x3F;
System.out.println("index: " + index);
// 添加inputByteLen信息后,最新的输入信息 位长
// (inputByteLen << 3) = (inputByteLen * 8) 为输入数据位长(bit length)
if ((inputBitCount[0] += (inputByteLen << 3)) < (inputByteLen << 3)) {
inputBitCount[1]++;
}
// 0
inputBitCount[1] += (inputByteLen >>> 29);
// 差多少满512bit(64字节)
partLen = 64 - index;
if (inputByteLen >= partLen) {
// 拷贝 partLen 字节数据
// 数据运算
md5Memcpy(buffer512Bit, inputByte, index, 0, partLen);
md5Transform(buffer512Bit);
//
for (i = partLen; i + 63 < inputByteLen; i += 64) {
// 拷贝64字节数据
// 数据运算
md5Memcpy(blockByteArray, inputByte, 0, i, 64);
md5Transform(blockByteArray);
}
index = 0;
} else {
i = 0;
}
// 拷贝64字节数据
md5Memcpy(buffer512Bit, inputByte, index, i, inputByteLen - i);
}
/**
* 整理和填写输出结果,结果放到数组digest中。
*/
private void md5Final() {
/**
* 64位输入数据的位长信息(bit length)
* 数组中:低位在前,高位在后
*/
// 8个字节 缓存空间 8 * 8bit = 64bit
byte[] bits = new byte[8];
longArray2ByteArray(bits, inputBitCount, 8);
// 输入信息的字节数byte length
int index = (int) (inputBitCount[0] >>> 3) & 0x3f;
// 输入信息的位长<448,补充到448;输入信息的位长>=448,补充到(512+448)= 960,960/8=120字节
// (56 * 8bit = 448bit)
int padLen = (index < 56) ? (56 - index) : (120 - index);
/**
* 数据填充: N * 512 + 448
*/
md5Update(PADDING, padLen);
/**
* 1、数据填充: N * 512 + 448 + 64
* 2、计算最后一个分组数据
*/
md5Update(bits, 8);
/**
* 根据a、b、c、d 得到最终的 md5ByteArray 数据结果
* 数组结果中(低位在前,高位在后)
*/
longArray2ByteArray(md5ByteArray, abcd, 16);
}
/**
* MD5核心变换计算程序: 由md5Update函数调用,block是分块的原始字节数组
*
* @param blockByteArray 512bit分组数据,分为16个子分组,每个分组32bit数据
*/
private void md5Transform(byte blockByteArray[]) {
// 初始化a、b、c、d
long a = abcd[0], b = abcd[1], c = abcd[2], d = abcd[3];
// 512bit分成16个子分组,每个分组32bit
// 16 * 32bit = 512bit
long[] M32 = new long[16];
byteArray2LongArray(M32, blockByteArray, 64);
// 进行4级级联运算
// 第1级
a = FF(a, b, c, d, M32[0], S11, 0xd76aa478L); /* 1 */
d = FF(d, a, b, c, M32[1], S12, 0xe8c7b756L); /* 2 */
c = FF(c, d, a, b, M32[2], S13, 0x242070dbL); /* 3 */
b = FF(b, c, d, a, M32[3], S14, 0xc1bdceeeL); /* 4 */
a = FF(a, b, c, d, M32[4], S11, 0xf57c0fafL); /* 5 */
d = FF(d, a, b, c, M32[5], S12, 0x4787c62aL); /* 6 */
c = FF(c, d, a, b, M32[6], S13, 0xa8304613L); /* 7 */
b = FF(b, c, d, a, M32[7], S14, 0xfd469501L); /* 8 */
a = FF(a, b, c, d, M32[8], S11, 0x698098d8L); /* 9 */
d = FF(d, a, b, c, M32[9], S12, 0x8b44f7afL); /* 10 */
c = FF(c, d, a, b, M32[10], S13, 0xffff5bb1L); /* 11 */
b = FF(b, c, d, a, M32[11], S14, 0x895cd7beL); /* 12 */
a = FF(a, b, c, d, M32[12], S11, 0x6b901122L); /* 13 */
d = FF(d, a, b, c, M32[13], S12, 0xfd987193L); /* 14 */
c = FF(c, d, a, b, M32[14], S13, 0xa679438eL); /* 15 */
b = FF(b, c, d, a, M32[15], S14, 0x49b40821L); /* 16 */
// 第2级
a = GG(a, b, c, d, M32[1], S21, 0xf61e2562L); /* 17 */
d = GG(d, a, b, c, M32[6], S22, 0xc040b340L); /* 18 */
c = GG(c, d, a, b, M32[11], S23, 0x265e5a51L); /* 19 */
b = GG(b, c, d, a, M32[0], S24, 0xe9b6c7aaL); /* 20 */
a = GG(a, b, c, d, M32[5], S21, 0xd62f105dL); /* 21 */
d = GG(d, a, b, c, M32[10], S22, 0x2441453L); /* 22 */
c = GG(c, d, a, b, M32[15], S23, 0xd8a1e681L); /* 23 */
b = GG(b, c, d, a, M32[4], S24, 0xe7d3fbc8L); /* 24 */
a = GG(a, b, c, d, M32[9], S21, 0x21e1cde6L); /* 25 */
d = GG(d, a, b, c, M32[14], S22, 0xc33707d6L); /* 26 */
c = GG(c, d, a, b, M32[3], S23, 0xf4d50d87L); /* 27 */
b = GG(b, c, d, a, M32[8], S24, 0x455a14edL); /* 28 */
a = GG(a, b, c, d, M32[13], S21, 0xa9e3e905L); /* 29 */
d = GG(d, a, b, c, M32[2], S22, 0xfcefa3f8L); /* 30 */
c = GG(c, d, a, b, M32[7], S23, 0x676f02d9L); /* 31 */
b = GG(b, c, d, a, M32[12], S24, 0x8d2a4c8aL); /* 32 */
// 第3级
a = HH(a, b, c, d, M32[5], S31, 0xfffa3942L); /* 33 */
d = HH(d, a, b, c, M32[8], S32, 0x8771f681L); /* 34 */
c = HH(c, d, a, b, M32[11], S33, 0x6d9d6122L); /* 35 */
b = HH(b, c, d, a, M32[14], S34, 0xfde5380cL); /* 36 */
a = HH(a, b, c, d, M32[1], S31, 0xa4beea44L); /* 37 */
d = HH(d, a, b, c, M32[4], S32, 0x4bdecfa9L); /* 38 */
c = HH(c, d, a, b, M32[7], S33, 0xf6bb4b60L); /* 39 */
b = HH(b, c, d, a, M32[10], S34, 0xbebfbc70L); /* 40 */
a = HH(a, b, c, d, M32[13], S31, 0x289b7ec6L); /* 41 */
d = HH(d, a, b, c, M32[0], S32, 0xeaa127faL); /* 42 */
c = HH(c, d, a, b, M32[3], S33, 0xd4ef3085L); /* 43 */
b = HH(b, c, d, a, M32[6], S34, 0x4881d05L); /* 44 */
a = HH(a, b, c, d, M32[9], S31, 0xd9d4d039L); /* 45 */
d = HH(d, a, b, c, M32[12], S32, 0xe6db99e5L); /* 46 */
c = HH(c, d, a, b, M32[15], S33, 0x1fa27cf8L); /* 47 */
b = HH(b, c, d, a, M32[2], S34, 0xc4ac5665L); /* 48 */
// 第4级
a = II(a, b, c, d, M32[0], S41, 0xf4292244L); /* 49 */
d = II(d, a, b, c, M32[7], S42, 0x432aff97L); /* 50 */
c = II(c, d, a, b, M32[14], S43, 0xab9423a7L); /* 51 */
b = II(b, c, d, a, M32[5], S44, 0xfc93a039L); /* 52 */
a = II(a, b, c, d, M32[12], S41, 0x655b59c3L); /* 53 */
d = II(d, a, b, c, M32[3], S42, 0x8f0ccc92L); /* 54 */
c = II(c, d, a, b, M32[10], S43, 0xffeff47dL); /* 55 */
b = II(b, c, d, a, M32[1], S44, 0x85845dd1L); /* 56 */
a = II(a, b, c, d, M32[8], S41, 0x6fa87e4fL); /* 57 */
d = II(d, a, b, c, M32[15], S42, 0xfe2ce6e0L); /* 58 */
c = II(c, d, a, b, M32[6], S43, 0xa3014314L); /* 59 */
b = II(b, c, d, a, M32[13], S44, 0x4e0811a1L); /* 60 */
a = II(a, b, c, d, M32[4], S41, 0xf7537e82L); /* 61 */
d = II(d, a, b, c, M32[11], S42, 0xbd3af235L); /* 62 */
c = II(c, d, a, b, M32[2], S43, 0x2ad7d2bbL); /* 63 */
b = II(b, c, d, a, M32[9], S44, 0xeb86d391L); /* 64 */
//分别累加到 a[0], b[1], c[2], d[3]
abcd[0] += a;
abcd[1] += b;
abcd[2] += c;
abcd[3] += d;
}
// #######################################################
//定义F G H I 为4个基数 ,即为4个基本的MD5函数,进行简单的位运算
private long F(long x, long y, long z) {
return (x & y) | ((~x) & z);
}
private long G(long x, long y, long z) {
return (x & z) | (y & (~z));
}
private long H(long x, long y, long z) {
return x ^ y ^ z;
}
private long I(long x, long y, long z) {
return y ^ (x | (~z));
}
// FF,GG,HH和II调用F,G,H,I函数进行进一步变换
private long FF(long a, long b, long c, long d, long x, long s, long ac) {
a += F(b, c, d) + x + ac;
// 循环左移s位
//这里long型数据右移时使用无符号右移运算符>>>
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long GG(long a, long b, long c, long d, long x, long s, long ac) {
a += G(b, c, d) + x + ac;
// 循环左移s位
//这里long型数据右移时使用无符号右移运算符>>>
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long HH(long a, long b, long c, long d, long x, long s, long ac) {
a += H(b, c, d) + x + ac;
// 循环左移s位
//这里long型数据右移时使用无符号右移运算符>>>
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long II(long a, long b, long c, long d, long x, long s, long ac) {
a += I(b, c, d) + x + ac;
// 循环左移s位
//这里long型数据右移时使用无符号右移运算符>>>
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
// #######################################################
/**
* byte数组的块拷贝函数:将input数组中的起始位置为inpos,长度len的数据拷贝到output数组起始位置outpos处
*/
private void md5Memcpy(byte[] output, byte[] input, int outpos, int inpos,
int len) {
int i;
for (i = 0; i < len; i++) {
output[outpos + i] = input[inpos + i];
}
}
// #######################################################
/**
* 把byte类型的数据转换成十六进制ASCII字符表示
*
* @param in
* @return
*/
private static String byte2HEX(byte in) {
char[] digitStr =
{
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'
};
char[] out = new char[2];
out[0] = digitStr[(in >> 4) & 0x0F]; //取高4位
out[1] = digitStr[in & 0x0F]; //取低4位
String s = new String(out);
return s;
}
/**
* 将long型数组按顺序拆成byte型数组 (低位在前,高位在后)
*
* @param outputByteArray 输出byte数组
* @param inputLongArray 输入long数组
* @param byteLength outputByteArray字节数组的长度
*/
private void longArray2ByteArray(byte[] outputByteArray, long[] inputLongArray, int byteLength) {
int i, j;
for (i = 0, j = 0; j < byteLength; i++, j += 4) {
// 低8位
outputByteArray[j] = (byte) (inputLongArray[i] & 0xffL);
// 中间8位[低]
outputByteArray[j + 1] = (byte) ((inputLongArray[i] >>> 8) & 0xffL);
// 中间8位[高]
outputByteArray[j + 2] = (byte) ((inputLongArray[i] >>> 16) & 0xffL);
// 高8位
outputByteArray[j + 3] = (byte) ((inputLongArray[i] >>> 24) & 0xffL);
}
}
/**
* 将byte型数组按顺序合成long型数组,长度为len
*
* @param output
* @param input
* @param len
*/
private void byteArray2LongArray(long[] output, byte[] input, int len) {
int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[i] = byte2Long(input[j])
| (byte2Long(input[j + 1]) << 8)
| (byte2Long(input[j + 2]) << 16)
| (byte2Long(input[j + 3]) << 24);
}
}
/**
* 把byte型数据转换为无符号long型数据
*
* @param b
* @return
*/
private static long byte2Long(byte b) {
return b > 0 ? b : (b & 0x7F + 128);
}
}
四、MD5 API使用
Java中使用Java API实现MD5的代码片段,记录一下,留着以后 coding 时快速使用:
public static String getMd5(String inputStr) {
String md5Str = "";
// 判空处理
if (inputStr == null || inputStr.equals("")) {
return md5Str;
}
try {
//
// 1、得到长度为16的byte字节数组
MessageDigest md = MessageDigest.getInstance("md5");
md.update(inputStr.getBytes());
byte[] bytes = md.digest();
//
// 2、长度为16的byte字节数组,转化为长度为32的字符串
StringBuilder sb = new StringBuilder();
for (byte b : bytes) {
// 转化为16进制字符串
String hexStr = Integer.toHexString(b & 0xFF);
// 字符串长度为1时补0
if (hexStr.length() == 1) {
sb.append("0");
}
sb.append(hexStr);
}
// 得到长度为32的字符串
md5Str = sb.toString();
} catch (Exception e) {
e.printStackTrace();
}
return md5Str;
}
五、参考:
MD5 Message-Digest:
https://datatracker.ietf.org/doc/html/rfc1321
RFC 6151:
https://datatracker.ietf.org/doc/html/rfc6151
维基百科MD5:
https://zh.wikipedia.org/wiki/MD5
MD5算法原理:
https://www.cnblogs.com/nhdlb/p/12007162.html
MD5算法:
https://blog.csdn.net/sinat_27933301/article/details/79538169
= THE END =
详解 MD5 信息摘要算法的更多相关文章
- MD5( 信息摘要算法)的概念原理及python代码的实现
简述: message-digest algorithm 5(信息-摘要算法).经常说的“MD5加密”,就是它→信息-摘要算法. md5,其实就是一种算法.可以将一个字符串,或文件,或压缩包,执行md ...
- (3.14) set statistics io/time/profile /SET SHOWPLAN_ALL ON详解统计信息与执行计划
SQL Server读懂语句运行的统计信息 SET STATISTICS TIME IO PROFILE ON 执行计划详细描述请参考(读懂执行计划) 对于语句的运行,除了执行计划本身,还有一些其他 ...
- CentOS 6.5环境下heartbeat高可用集群的实现及工作原理详解
Linux HA Cluster高可用服务器集群,所谓的高可用不是主机的高可用,而是服务的高可用. 什么叫高可用:一个服务器down掉的可能性多种多样,任何一个可能坏了都有可能带来风险,而服务器离线通 ...
- 前端基础:HTTP 状态码详解
HTTP 状态码详解 1xx(信息类):表示接收到请求并继续处理 100 客户端应当继续发送请求.这个临时响应是用来通知客户端他的部分请求已经被服务器接收,且仍未被拒绝.客户端应当继续发送请求的剩余部 ...
- hashlib加密模块详解
1.hash是把任意长度的消息压缩到某一固定长度的数值的函数. hash主要用于安全加密,把一些不同长度的信息转化成杂乱的128位编码里,叫做hash值. hash就是把内容和内容地址之间找到一种映射 ...
- MD5加密详解
MD5加密详解 引言: 我在百度百科上查找到了关于MD5的介绍,我从中摘要一些重要信息: Message Digest Algorithm MD5(中文名为信息摘要算法第五版)为计算机安全领域广泛使用 ...
- Android apk签名详解——AS签名、获取签名信息、系统签名、命令行签名
Apk签名,每一个Android开发者都不陌生.它就是对我们的apk加了一个校验参数,防止apk被掉包.一开始做Android开发,就接触到了apk签名:后来在微信开放平台.高德地图等平台注册时,需要 ...
- HTTP头部信息和错误代码详解-《HTTP权威指南》
最近在调试 前后端分离的请求测试,遇到了一个405错误, 无法接受,于是开始了人肉搜索405. 最后 还是HTTP头部信息里的Accept:application/json 这个Accept 导致的, ...
- 【图文详解】scrapy爬虫与动态页面——爬取拉勾网职位信息(2)
上次挖了一个坑,今天终于填上了,还记得之前我们做的拉勾爬虫吗?那时我们实现了一页的爬取,今天让我们再接再厉,实现多页爬取,顺便实现职位和公司的关键词搜索功能. 之前的内容就不再介绍了,不熟悉的请一定要 ...
随机推荐
- 。 (有些情况下通过 lsof(8) 或 fuser(1) 可以 找到有关使用该设备的进程的有用信息)
umount时目标忙解决办法 标签(空格分隔): ceph ceph运维 osd 在删除osd后umount时,始终无法umonut,可以通过fuser查看设备被哪个进程占用,之后杀死进程,就可以顺利 ...
- java并发编程工具类JUC第二篇:ArrayBlockingQueue
类ArrayBlockingQueue是BlockingQueue接口的实现类,它是有界的阻塞队列,内部使用数组存储队列元素.这里的"有界"是指存储容量存在上限,不能无限存储元素. ...
- 【补档STM32】STM32F103俄罗斯方块游戏实现
项目地址:https://gitee.com/daycen/stm32-tetris/tree/master 使用Keil uVision5打开即可 一.概述 本文介绍了一个基于STM32的俄罗斯 ...
- python中的时间戳和格式化之间的转换
import time #把格式化时间转换成时间戳 def str_to_timestamp(str_time=None, format='%Y-%m-%d %H:%M:%S'): if str_ti ...
- Python Xpath语法
Python Xpath语法 一.选取节点 常用的路劲表达式: 表达式 描述 实例 nodename 选取nodename节点的所有子节点 xpath('//div') 选取了div节点 ...
- BERT模型的OneFlow实现
BERT模型的OneFlow实现 模型概述 BERT(Bidirectional Encoder Representations from Transformers)是NLP领域的一种预训练模型.本案 ...
- 如何为应用选择最佳的FPGA(下)
如何为应用选择最佳的FPGA(下) How to select an FPGA board? FPGA板的选择在很大程度上受FPGA本身的影响,也受整个板的特性和性能的影响.们已经在上面的章节中讨论了 ...
- 『言善信』Fiddler工具 — 5、Fiddler界面布局详解【会话列表】
目录 1.会话列表说明 2.会话列表不同颜色的含义 3.会话列表图标说明 4.会话列表应用设置 (1)给Fiddler会话列表增加IP列 (2)添加自定义列 (3)添加完成请求时间 (4)其他操作 1 ...
- pytest基础简介及实践举例
一.pytest简介 pytest 是 python 的第三方单元测试框架,比自带的 unittest 更简洁和高效,同时兼容 unittest 框架.它还有如下优点: 1.简单灵活,容易上手,文档丰 ...
- 从实力的角度出发来思考这道AOP题目
文/楠木大叔 技术更迭,一往无前.技术人总是要不断学习以适应社会的发展和行业对我们的要求.每隔一段时间,就会有纷至沓来的新技术,新知识,新概念,我们应该如何应对,是被逼到墙角,还是主动出击? 导读 从 ...