一.简介

adaboost是一种boosting方法,它的要点包括如下两方面:

1.模型生成

每一个基分类器会基于上一轮分类器在训练集上的表现,对样本做权重调整,使得错分样本的权重增加,正确分类的样本权重降低,所以当前轮的训练更加关注于上一轮误分的样本;

2.模型组合

adaboost是采用的加权投票的方法

简单来说,adaboost算法涉及两种权重的计算:样本权重分类器权重,接下来直接讲算法流程

二.算法流程

输入:训练集\(T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}\),其中\(x_i\in R^n,y_i\in\{+1,-1\},i=1,2,...,N\)

输出:最终分类器\(G(x)\)

(1)初始化训练数据的权重分布:

\[D_1=(w_{11},...,w_{1i},...,w_{1N}),w_{1i}=\frac{1}{N},i=1,2,...,N
\]

(2)对\(m=1,2,...,M:\)

(2.1)使用具有权重分布\(D_m\)的训练数据集学习,得到基本分类器:\(G_m(x)\)

(2.2)计算\(G_m(x)\)在训练集上的分类误差率:\(e_m=\sum_{i=1}^NP(G_m(x_i)\neq y_i)=\sum_{i=1}^Nw_{mi}I(G_m(x_i)\neq y_i)\)

(2.3)计算\(G_m(x)\)的权重系数:\(\alpha_m=\frac{1}{2}ln\frac{1-e_m}{e_m}\)

(2.4)更新训练样本权重:

\[w_{m+1,i}=\frac{w_{mi}}{Z_m}exp(-\alpha_my_iG_m(x_i)),i=1,2,...,N
\]

这里\(Z_m\)是归一化因子

(3)基于基分类器,构建最终的分类器:

\[G(x)=sign(\sum_{m=1}^M\alpha_mG_m(x))
\]

简单来说大致流程如下:

三.代码实现

import os
os.chdir('../')
from ml_models import utils
from ml_models.tree import CARTClassifier
import copy
import numpy as np
%matplotlib inline """
AdaBoost分类器的实现,封装到ml_models.ensemble
""" class AdaBoostClassifier(object):
def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
"""
:param base_estimator: 基分类器,允许异质;异质的情况下使用列表传入比如[estimator1,estimator2,...,estimator10],这时n_estimators会失效;
同质的情况,单个estimator会被copy成n_estimators份
:param n_estimators: 基分类器迭代数量
:param learning_rate: 学习率,降低后续基分类器的权重,避免过拟合
"""
self.base_estimator = base_estimator
self.n_estimators = n_estimators
self.learning_rate = learning_rate
if self.base_estimator is None:
# 默认使用决策树桩
self.base_estimator = CARTClassifier(max_depth=2)
# 同质分类器
if type(base_estimator) != list:
estimator = self.base_estimator
self.base_estimator = [copy.deepcopy(estimator) for _ in range(0, self.n_estimators)]
# 异质分类器
else:
self.n_estimators = len(self.base_estimator) # 记录estimator权重
self.estimator_weights = [] def fit(self, x, y):
n_sample = x.shape[0]
sample_weights = np.asarray([1.0] * n_sample)
for index in range(0, self.n_estimators):
self.base_estimator[index].fit(x, y, sample_weight=sample_weights) indicates = (self.base_estimator[index].predict(x) == y).astype(int)
# 计算误分率
error_rate = np.sum([sample_weights[j] * (1.0 - indicates[j]) for j in range(0, n_sample)]) / n_sample # 计算权重系数
alpha_rate = 1.0 / 2.0 * np.log((1 - error_rate) / (error_rate + 1e-7))
alpha_rate = min(10.0, alpha_rate)
self.estimator_weights.append(alpha_rate) # 更新样本权重
for j in range(0, n_sample):
sample_weights[j] = sample_weights[j] * np.exp(-1.0 * alpha_rate * np.power(-1.0, 1 - indicates[j]))
sample_weights = sample_weights / np.sum(sample_weights) * n_sample
# 更新estimator权重
for i in range(0, self.n_estimators):
self.estimator_weights[i] *= np.power(self.learning_rate, i) def predict_proba(self, x):
# TODO:并行优化
result = np.sum(
[self.base_estimator[j].predict_proba(x) * self.estimator_weights[j] for j in
range(0, self.n_estimators)],
axis=0)
return result / result.sum(axis=1, keepdims=True) def predict(self, x):
return np.argmax(self.predict_proba(x), axis=1)
#造伪数据
from sklearn.datasets import make_classification
data, target = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1, n_redundant=0,
n_repeated=0, n_clusters_per_class=1, class_sep=.5,random_state=21)

# 同质
classifier = AdaBoostClassifier(base_estimator=CARTClassifier(max_depth=2),n_estimators=10)
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

#异质
from ml_models.linear_model import LogisticRegression
from ml_models.svm import SVC
classifier = AdaBoostClassifier(base_estimator=[LogisticRegression(),SVC(kernel='rbf',C=5.0),CARTClassifier()])
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

# 权重衰减
classifier = AdaBoostClassifier(base_estimator=[LogisticRegression(),SVC(kernel='rbf',C=5.0),CARTClassifier()],learning_rate=0.5)
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

四.问题讨论

1.基本要求:弱可学习

注意有个基本要求,那就是\(e_m<0.5\),即分类器至少是弱可学习的,这样才能保证\(\alpha_m>0\),此时样本的权重调整(如下公式)才有意义,即正确分类的样本权重降低,错误分类的样本权重升高:

\[w_{m+1,i}=\left\{\begin{matrix}
\frac{w_{mi}}{Z_m}e^{-\alpha_m}, & G_m(x_i)= y_i \\
\frac{w_{mi}}{Z_m}e^{\alpha_m} & G_m(x_i)\neq y_i
\end{matrix}\right.
\]

对于二分类问题,弱可学习其实是很容易保证的,对于\(e_m>0.5\)的情况,只需要对其预测取反,即可得到\(1-e_m<0.5\)的错误率

2.基分类器不支持样本权重怎么办?

对于不能支持样本权重训练的基分类器,可以通过样本重采样来实现

五.训练误差分析

这一部分证明训练误差会随着基分类器的数量增加而指数下降,首先抛出第一个不等式关系:

\[关系式1:\frac{1}{N}\sum_{i=1}^NI(G(x_i)\neq y_i)\leq \frac{1}{N}\sum_{i=1}^Nexp(-y_if(x_i))=\prod_{m=1}^MZ_m
\]

这里\(f(x)=\sum_{m=1}^M\alpha_mG_m(x),G(x)=sign(f(x)),Z_m\)与上面的定义一样,前半部分很好证明:如果\(G(x_i)\neq y_i\),则\(y_if(x_i)<0\),所以\(exp(-y_if(x_i))\geq 1=I(G(x_i)\neq y_i)\),而对于\(G(x_i)= y_i\)的情况,显然有\(exp(-y_if(x_i))\geq 0=I(G(x_i\neq y_i))\);

接下来证明后半部分,根据之前的推导,有如下的两点条件需要注意:

\[条件1:w_{1i}=\frac{1}{N},i=1,2,...,N\\
条件2:w_{mi}exp(-\alpha_my_iG_m(x_i))=Z_mw_{m+1,i},i=1,2,...,N,m=1,2,...,M
\]

所以:

\[\frac{1}{N}\sum_{i=1}^Nexp(-y_if(x_i))\\
=\frac{1}{N}\sum_{i=1}^Nexp(-\sum_{m=1}^M\alpha_my_iG_m(x_i)))\\
=\sum_{i=1}^N \frac{1}{N}\prod_{m=1}^Mexp(-\alpha_my_iG_m(x_i))\\
=\sum_{i=1}^N w_{1i}\prod_{m=1}^Mexp(-\alpha_my_iG_m(x_i))(用到了条件1)\\
=\sum_{i=1}^N w_{1i}exp(-\alpha_1y_iG_1(x_i))\prod_{m=2}^Mexp(-\alpha_my_iG_m(x_i))\\
=\sum_{i=1}^N Z_1w_{2i}\prod_{m=2}^Mexp(-\alpha_my_iG_m(x_i))(用到了条件2)\\
=Z_1\sum_{i=1}^N w_{2i}\prod_{m=2}^Mexp(-\alpha_my_iG_m(x_i))\\
=Z_1Z_2\sum_{i=1}^N w_{3i}\prod_{m=3}^Mexp(-\alpha_my_iG_m(x_i))\\
=\cdots\\
=\prod_{m=1}^MZ_m
\]

接下来要抛出第二个关系式,对于二分类问题有如下不等式成立:

\[关系式2:\prod_{m=1}^MZ_m=\prod_{m=1}^M[2\sqrt{e_m(1-e_m)}]=\prod_{m=1}^M\sqrt{1-4\gamma_m^2}\leq exp(-2\sum_{i=1}^M\gamma_m^2)
\]

这里:\(\gamma_m=\frac{1}{2}-e_m\),首先证明等式部分,由前面的算法部分,我们知道\(e_m=\sum_{i=1}^Nw_{mi}I(G_m(x_i)\neq y_i)\),所以:

\[Z_m=\sum_{i=1}^Nw_{mi}exp(-\alpha_my_iG_m(x_i))\\
=\sum_{y_i=G_m(x_i)}w_{mi}e^{-\alpha_m}+\sum_{y_i\neq G_m(x_i)}w_{mi}e^{\alpha_m}\\
=(1-e_m)e^{-\alpha_m}+e_me^{\alpha_m}\\
=2\sqrt{e_m(1-e_m)}\\
=\sqrt{1-4\gamma_m^2}
\]

至于不等式部分,其实对于\(\forall 0\leq x\leq 1\),都有\(e^{-x/2}\geq \sqrt{1-x}\)恒成立(证明从略,直观理解如下图),将\(x\)替换为\(4\gamma_m^2\)即可得到上面的不等式,从而关系式2得到证明;

接下来简单做一个推论:一定能找到一个\(\gamma>0\),对所有\(\gamma_m\geq\gamma\)成立,则有如下关系:

\[关系式3:exp(-2\sum_{i=1}^M\gamma_m^2)\leq exp(-2M\gamma^2)
\]

结合关系式1、2、3可以得出:

\[\frac{1}{N}\sum_{i=1}^NI(G(x_i)\neq y_i)\leq exp(-2M\gamma^2)
\]

即adaboost的误差上界会随着\(M\)的增加以指数速率下降

import matplotlib.pyplot as plt
x=np.linspace(0,1,10)
plt.plot(x,np.sqrt(1-x),'b')
plt.plot(x,np.exp(-0.5*x),'r')
[<matplotlib.lines.Line2D at 0x21a6b0c1048>]

《机器学习Python实现_10_02_集成学习_boosting_adaboost分类器实现》的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. 第30天学习打卡(异常概述 IO流概述)

    异常概述 即非正常情况,通俗的说,异常就是程序出现的错误 异常的分类(Throwable) 异常(Exception) 合理的应用程序可能需要捕获的问题 举例:NullPointerException ...

  2. s2010 安装mvc3

    下载链接如下:MVC 3安装包:http://www.microsoft.com/downloads/zh-cn/details.aspx?familyid=d2928bc1-f48c-4e95-a0 ...

  3. Linux速通02 命令格式

    命令的格式 # 格式:命令 [选项][参数] * 命令:告诉 Linux操作系统执行什么 * 选项:说明命令运行的方式(可以改变命令的功能).以 "-"字符开始 * 参数:说明命令 ...

  4. 漏洞复现-CVE-2016-4437-Shiro反序列化

        0x00 实验环境 攻击机:Win 10 靶机也可作为攻击机:Ubuntu18 (docker搭建的vulhub靶场)(兼顾反弹shell的攻击机) 0x01 影响版本 Shiro <= ...

  5. SHELL编程概念&变量剖析

    一.shell软件概念和应用场景 1) 学习Linux技术,不是为了学习系统安装.命令操作.用户权限.配置IP.网络管理,学习Linux技术重点:基于Linux系统部署和维护各种应用软件.程序(Apa ...

  6. 漫漫Java路1—基础知识2—注释和命名规则

    ## 注释 1. 单行注释 ```java //这是一个注释 ``` 2. 多行注释 ```java /* 这是一个注释 */ ``` 3. 文档注释 ```java /** * * * */ ``` ...

  7. Codeforces Round #699 (Div. 2)

    A Space Navigation #include <bits/stdc++.h> using namespace std; typedef long long LL; #define ...

  8. VUE中的子父组件、兄弟组件之间相互传值,相互调用彼此的方法

    vue--组件传值 父组件传值给子组件--"props" 一.父组件--示例 <template> <child :choose-data="choos ...

  9. 我与FreeBSD的故事之三

    联想G400 是我在国美电器线下买的笔记本.我什么也不懂,就随便买了,不随便也不行,谁都知道只要不是那种特别的奸商,基本上货物都是符合价值决定价格这个基本的经济学规律的.所以没钱就失去了选择的自由.到 ...

  10. 选择 FreeBSD 而不是 Linux 的技术性原因1

    Ports FreeBSD Ports 是一个惊人的工程壮举.NetBSD 的 pkgsrc (package source) 和 OpenBSD 的 ports collection 都源于 Fre ...