一.简介

adaboost是一种boosting方法,它的要点包括如下两方面:

1.模型生成

每一个基分类器会基于上一轮分类器在训练集上的表现,对样本做权重调整,使得错分样本的权重增加,正确分类的样本权重降低,所以当前轮的训练更加关注于上一轮误分的样本;

2.模型组合

adaboost是采用的加权投票的方法

简单来说,adaboost算法涉及两种权重的计算:样本权重分类器权重,接下来直接讲算法流程

二.算法流程

输入:训练集\(T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}\),其中\(x_i\in R^n,y_i\in\{+1,-1\},i=1,2,...,N\)

输出:最终分类器\(G(x)\)

(1)初始化训练数据的权重分布:

\[D_1=(w_{11},...,w_{1i},...,w_{1N}),w_{1i}=\frac{1}{N},i=1,2,...,N
\]

(2)对\(m=1,2,...,M:\)

(2.1)使用具有权重分布\(D_m\)的训练数据集学习,得到基本分类器:\(G_m(x)\)

(2.2)计算\(G_m(x)\)在训练集上的分类误差率:\(e_m=\sum_{i=1}^NP(G_m(x_i)\neq y_i)=\sum_{i=1}^Nw_{mi}I(G_m(x_i)\neq y_i)\)

(2.3)计算\(G_m(x)\)的权重系数:\(\alpha_m=\frac{1}{2}ln\frac{1-e_m}{e_m}\)

(2.4)更新训练样本权重:

\[w_{m+1,i}=\frac{w_{mi}}{Z_m}exp(-\alpha_my_iG_m(x_i)),i=1,2,...,N
\]

这里\(Z_m\)是归一化因子

(3)基于基分类器,构建最终的分类器:

\[G(x)=sign(\sum_{m=1}^M\alpha_mG_m(x))
\]

简单来说大致流程如下:

三.代码实现

import os
os.chdir('../')
from ml_models import utils
from ml_models.tree import CARTClassifier
import copy
import numpy as np
%matplotlib inline """
AdaBoost分类器的实现,封装到ml_models.ensemble
""" class AdaBoostClassifier(object):
def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
"""
:param base_estimator: 基分类器,允许异质;异质的情况下使用列表传入比如[estimator1,estimator2,...,estimator10],这时n_estimators会失效;
同质的情况,单个estimator会被copy成n_estimators份
:param n_estimators: 基分类器迭代数量
:param learning_rate: 学习率,降低后续基分类器的权重,避免过拟合
"""
self.base_estimator = base_estimator
self.n_estimators = n_estimators
self.learning_rate = learning_rate
if self.base_estimator is None:
# 默认使用决策树桩
self.base_estimator = CARTClassifier(max_depth=2)
# 同质分类器
if type(base_estimator) != list:
estimator = self.base_estimator
self.base_estimator = [copy.deepcopy(estimator) for _ in range(0, self.n_estimators)]
# 异质分类器
else:
self.n_estimators = len(self.base_estimator) # 记录estimator权重
self.estimator_weights = [] def fit(self, x, y):
n_sample = x.shape[0]
sample_weights = np.asarray([1.0] * n_sample)
for index in range(0, self.n_estimators):
self.base_estimator[index].fit(x, y, sample_weight=sample_weights) indicates = (self.base_estimator[index].predict(x) == y).astype(int)
# 计算误分率
error_rate = np.sum([sample_weights[j] * (1.0 - indicates[j]) for j in range(0, n_sample)]) / n_sample # 计算权重系数
alpha_rate = 1.0 / 2.0 * np.log((1 - error_rate) / (error_rate + 1e-7))
alpha_rate = min(10.0, alpha_rate)
self.estimator_weights.append(alpha_rate) # 更新样本权重
for j in range(0, n_sample):
sample_weights[j] = sample_weights[j] * np.exp(-1.0 * alpha_rate * np.power(-1.0, 1 - indicates[j]))
sample_weights = sample_weights / np.sum(sample_weights) * n_sample
# 更新estimator权重
for i in range(0, self.n_estimators):
self.estimator_weights[i] *= np.power(self.learning_rate, i) def predict_proba(self, x):
# TODO:并行优化
result = np.sum(
[self.base_estimator[j].predict_proba(x) * self.estimator_weights[j] for j in
range(0, self.n_estimators)],
axis=0)
return result / result.sum(axis=1, keepdims=True) def predict(self, x):
return np.argmax(self.predict_proba(x), axis=1)
#造伪数据
from sklearn.datasets import make_classification
data, target = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1, n_redundant=0,
n_repeated=0, n_clusters_per_class=1, class_sep=.5,random_state=21)

# 同质
classifier = AdaBoostClassifier(base_estimator=CARTClassifier(max_depth=2),n_estimators=10)
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

#异质
from ml_models.linear_model import LogisticRegression
from ml_models.svm import SVC
classifier = AdaBoostClassifier(base_estimator=[LogisticRegression(),SVC(kernel='rbf',C=5.0),CARTClassifier()])
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

# 权重衰减
classifier = AdaBoostClassifier(base_estimator=[LogisticRegression(),SVC(kernel='rbf',C=5.0),CARTClassifier()],learning_rate=0.5)
classifier.fit(data, target)
utils.plot_decision_function(data, target, classifier)

四.问题讨论

1.基本要求:弱可学习

注意有个基本要求,那就是\(e_m<0.5\),即分类器至少是弱可学习的,这样才能保证\(\alpha_m>0\),此时样本的权重调整(如下公式)才有意义,即正确分类的样本权重降低,错误分类的样本权重升高:

\[w_{m+1,i}=\left\{\begin{matrix}
\frac{w_{mi}}{Z_m}e^{-\alpha_m}, & G_m(x_i)= y_i \\
\frac{w_{mi}}{Z_m}e^{\alpha_m} & G_m(x_i)\neq y_i
\end{matrix}\right.
\]

对于二分类问题,弱可学习其实是很容易保证的,对于\(e_m>0.5\)的情况,只需要对其预测取反,即可得到\(1-e_m<0.5\)的错误率

2.基分类器不支持样本权重怎么办?

对于不能支持样本权重训练的基分类器,可以通过样本重采样来实现

五.训练误差分析

这一部分证明训练误差会随着基分类器的数量增加而指数下降,首先抛出第一个不等式关系:

\[关系式1:\frac{1}{N}\sum_{i=1}^NI(G(x_i)\neq y_i)\leq \frac{1}{N}\sum_{i=1}^Nexp(-y_if(x_i))=\prod_{m=1}^MZ_m
\]

这里\(f(x)=\sum_{m=1}^M\alpha_mG_m(x),G(x)=sign(f(x)),Z_m\)与上面的定义一样,前半部分很好证明:如果\(G(x_i)\neq y_i\),则\(y_if(x_i)<0\),所以\(exp(-y_if(x_i))\geq 1=I(G(x_i)\neq y_i)\),而对于\(G(x_i)= y_i\)的情况,显然有\(exp(-y_if(x_i))\geq 0=I(G(x_i\neq y_i))\);

接下来证明后半部分,根据之前的推导,有如下的两点条件需要注意:

\[条件1:w_{1i}=\frac{1}{N},i=1,2,...,N\\
条件2:w_{mi}exp(-\alpha_my_iG_m(x_i))=Z_mw_{m+1,i},i=1,2,...,N,m=1,2,...,M
\]

所以:

\[\frac{1}{N}\sum_{i=1}^Nexp(-y_if(x_i))\\
=\frac{1}{N}\sum_{i=1}^Nexp(-\sum_{m=1}^M\alpha_my_iG_m(x_i)))\\
=\sum_{i=1}^N \frac{1}{N}\prod_{m=1}^Mexp(-\alpha_my_iG_m(x_i))\\
=\sum_{i=1}^N w_{1i}\prod_{m=1}^Mexp(-\alpha_my_iG_m(x_i))(用到了条件1)\\
=\sum_{i=1}^N w_{1i}exp(-\alpha_1y_iG_1(x_i))\prod_{m=2}^Mexp(-\alpha_my_iG_m(x_i))\\
=\sum_{i=1}^N Z_1w_{2i}\prod_{m=2}^Mexp(-\alpha_my_iG_m(x_i))(用到了条件2)\\
=Z_1\sum_{i=1}^N w_{2i}\prod_{m=2}^Mexp(-\alpha_my_iG_m(x_i))\\
=Z_1Z_2\sum_{i=1}^N w_{3i}\prod_{m=3}^Mexp(-\alpha_my_iG_m(x_i))\\
=\cdots\\
=\prod_{m=1}^MZ_m
\]

接下来要抛出第二个关系式,对于二分类问题有如下不等式成立:

\[关系式2:\prod_{m=1}^MZ_m=\prod_{m=1}^M[2\sqrt{e_m(1-e_m)}]=\prod_{m=1}^M\sqrt{1-4\gamma_m^2}\leq exp(-2\sum_{i=1}^M\gamma_m^2)
\]

这里:\(\gamma_m=\frac{1}{2}-e_m\),首先证明等式部分,由前面的算法部分,我们知道\(e_m=\sum_{i=1}^Nw_{mi}I(G_m(x_i)\neq y_i)\),所以:

\[Z_m=\sum_{i=1}^Nw_{mi}exp(-\alpha_my_iG_m(x_i))\\
=\sum_{y_i=G_m(x_i)}w_{mi}e^{-\alpha_m}+\sum_{y_i\neq G_m(x_i)}w_{mi}e^{\alpha_m}\\
=(1-e_m)e^{-\alpha_m}+e_me^{\alpha_m}\\
=2\sqrt{e_m(1-e_m)}\\
=\sqrt{1-4\gamma_m^2}
\]

至于不等式部分,其实对于\(\forall 0\leq x\leq 1\),都有\(e^{-x/2}\geq \sqrt{1-x}\)恒成立(证明从略,直观理解如下图),将\(x\)替换为\(4\gamma_m^2\)即可得到上面的不等式,从而关系式2得到证明;

接下来简单做一个推论:一定能找到一个\(\gamma>0\),对所有\(\gamma_m\geq\gamma\)成立,则有如下关系:

\[关系式3:exp(-2\sum_{i=1}^M\gamma_m^2)\leq exp(-2M\gamma^2)
\]

结合关系式1、2、3可以得出:

\[\frac{1}{N}\sum_{i=1}^NI(G(x_i)\neq y_i)\leq exp(-2M\gamma^2)
\]

即adaboost的误差上界会随着\(M\)的增加以指数速率下降

import matplotlib.pyplot as plt
x=np.linspace(0,1,10)
plt.plot(x,np.sqrt(1-x),'b')
plt.plot(x,np.exp(-0.5*x),'r')
[<matplotlib.lines.Line2D at 0x21a6b0c1048>]

《机器学习Python实现_10_02_集成学习_boosting_adaboost分类器实现》的更多相关文章

  1. 简单物联网:外网访问内网路由器下树莓派Flask服务器

    最近做一个小东西,大概过程就是想在教室,宿舍控制实验室的一些设备. 已经在树莓上搭了一个轻量的flask服务器,在实验室的路由器下,任何设备都是可以访问的:但是有一些限制条件,比如我想在宿舍控制我种花 ...

  2. 利用ssh反向代理以及autossh实现从外网连接内网服务器

    前言 最近遇到这样一个问题,我在实验室架设了一台服务器,给师弟或者小伙伴练习Linux用,然后平时在实验室这边直接连接是没有问题的,都是内网嘛.但是回到宿舍问题出来了,使用校园网的童鞋还是能连接上,使 ...

  3. 外网访问内网Docker容器

    外网访问内网Docker容器 本地安装了Docker容器,只能在局域网内访问,怎样从外网也能访问本地Docker容器? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Docker容器 ...

  4. 外网访问内网SpringBoot

    外网访问内网SpringBoot 本地安装了SpringBoot,只能在局域网内访问,怎样从外网也能访问本地SpringBoot? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装Java 1 ...

  5. 外网访问内网Elasticsearch WEB

    外网访问内网Elasticsearch WEB 本地安装了Elasticsearch,只能在局域网内访问其WEB,怎样从外网也能访问本地Elasticsearch? 本文将介绍具体的实现步骤. 1. ...

  6. 怎样从外网访问内网Rails

    外网访问内网Rails 本地安装了Rails,只能在局域网内访问,怎样从外网也能访问本地Rails? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Rails 默认安装的Rails端口 ...

  7. 怎样从外网访问内网Memcached数据库

    外网访问内网Memcached数据库 本地安装了Memcached数据库,只能在局域网内访问,怎样从外网也能访问本地Memcached数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装 ...

  8. 怎样从外网访问内网CouchDB数据库

    外网访问内网CouchDB数据库 本地安装了CouchDB数据库,只能在局域网内访问,怎样从外网也能访问本地CouchDB数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动Cou ...

  9. 怎样从外网访问内网DB2数据库

    外网访问内网DB2数据库 本地安装了DB2数据库,只能在局域网内访问,怎样从外网也能访问本地DB2数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动DB2数据库 默认安装的DB2 ...

  10. 怎样从外网访问内网OpenLDAP数据库

    外网访问内网OpenLDAP数据库 本地安装了OpenLDAP数据库,只能在局域网内访问,怎样从外网也能访问本地OpenLDAP数据库? 本文将介绍具体的实现步骤. 1. 准备工作 1.1 安装并启动 ...

随机推荐

  1. WPF -- 一种直线识别方案

    本文介绍一种直线的识别方案. 步骤 使用最小二乘法回归直线: 得到直线方程y=kx+b后,计算所有点到直线的距离,若在阈值范围内,认为是直线. 实现 /// <summary> /// 最 ...

  2. 精确率precession和召回率recall

    假设有两类样本,A类和B类,我们要衡量分类器分类A的能力. 现在将所有样本输入分类器,分类器从中返回了一堆它认为属于A类的样本. 召回率:分类器认为属于A类的样本里,真正是A类的样本数,占样本集中所有 ...

  3. django框架如何解决跨域问题

    跨域问题的由来 由于浏览器具有同源策略的限制. 限制:在发送Ajax请求时,如果当前浏览器的URL是a.com,页面中向b.com发送Ajax请求,请求可以正常访问,但数据回到浏览器时,浏览器会阻止. ...

  4. WPF 基础 - 事件

    1. 前言 WPF 事件的路由环境是 UI 组件树,先来看看这棵树. 1.1 Logical Tree 和 Visual Tree WPF 中的树有两种,一颗是逻辑树,另一颗也是逻辑树. 开玩笑,WP ...

  5. 翻译:《实用的Python编程》05_02_Classes_encapsulation

    目录 | 上一节 (5.1 再谈字典) | 下一节 (6 生成器) 5.2 类和封装 创建类时,通常会尝试将类的内部细节进行封装.本节介绍 Python 编程中有关封装的习惯用法(包括私有变量和私有属 ...

  6. 数据搬运组件:基于Sqoop管理数据导入和导出

    本文源码:GitHub || GitEE 一.Sqoop概述 Sqoop是一款开源的大数据组件,主要用来在Hadoop(Hive.HBase等)与传统的数据库(mysql.postgresql.ora ...

  7. Linux 切换用户提示Permission denied

    在使用 su - hdfs 切换到 hdfs 用户时提示 su: Permission denied,但是密码确认是没错的. 找到文件 /etc/pam.d/su,注释掉 auth required ...

  8. 事件 on

    $(选择器).on(事件名称,事件的处理函数) 事件名称:js事件去掉on的部分,例如js中onclick,这里就是click 例如:<input type="button" ...

  9. HarmonyOS三方件开发指南(14)-Glide组件功能介绍

    <HarmonyOS三方件开发指南>系列文章合集 引言 在实际应用开发中,会用到大量图片处理,如:网络图片.本地图片.应用资源.二进制流.Uri对象等,虽然官方提供了PixelMap进行图 ...

  10. 【框架】SPI四种模式+通用设备驱动实现-源码

    目录 前言 bsp_spi.c bsp_spi.h bsp_flash.c bsp_flash.h 前言 SPI 介绍为搜集百度资料+个人理解 其余为原创(有误请指正) 集四种模式于一身 demo 采 ...