Hive千亿级数据倾斜解决方案
数据倾斜问题剖析
数据倾斜是分布式系统不可避免的问题,任何分布式系统都有几率发生数据倾斜,但有些小伙伴在平时工作中感知不是很明显,这里要注意本篇文章的标题—“千亿级数据”,为什么说千亿级,因为如果一个任务的数据量只有几百万,它即使发生了数据倾斜,所有数据都跑到一台机器去执行,对于几百万的数据量,一台机器执行起来还是毫无压力的,这时数据倾斜对我们感知不大,只有数据达到一个量级时,一台机器应付不了这么多的数据,这时如果发生数据倾斜,那么最后就很难算出结果。
本文首发公众号【五分钟学大数据】
所以就需要我们对数据倾斜的问题进行优化,尽量避免或减轻数据倾斜带来的影响。
在解决数据倾斜问题之前,还要再提一句:没有瓶颈时谈论优化,都是自寻烦恼。
大家想想,在map和reduce两个阶段中,最容易出现数据倾斜的就是reduce阶段,因为map到reduce会经过shuffle阶段,在shuffle中默认会按照key进行hash,如果相同的key过多,那么hash的结果就是大量相同的key进入到同一个reduce中,导致数据倾斜。
那么有没有可能在map阶段就发生数据倾斜呢,是有这种可能的。
一个任务中,数据文件在进入map阶段之前会进行切分,默认是128M一个数据块,但是如果当对文件使用GZIP压缩等不支持文件分割操作的压缩方式时,MR任务读取压缩后的文件时,是对它切分不了的,该压缩文件只会被一个任务所读取,如果有一个超大的不可切分的压缩文件被一个map读取时,就会发生map阶段的数据倾斜。
所以,从本质上来说,发生数据倾斜的原因有两种:一是任务中需要处理大量相同的key的数据。二是任务读取不可分割的大文件。
数据倾斜解决方案
MapReduce和Spark中的数据倾斜解决方案原理都是类似的,以下讨论Hive使用MapReduce引擎引发的数据倾斜,Spark数据倾斜也可以此为参照。
1. 空值引发的数据倾斜
实际业务中有些大量的null值或者一些无意义的数据参与到计算作业中,表中有大量的null值,如果表之间进行join操作,就会有shuffle产生,这样所有的null值都会被分配到一个reduce中,必然产生数据倾斜。
之前有小伙伴问,如果A、B两表join操作,假如A表中需要join的字段为null,但是B表中需要join的字段不为null,这两个字段根本就join不上啊,为什么还会放到一个reduce中呢?
这里我们需要明确一个概念,数据放到同一个reduce中的原因不是因为字段能不能join上,而是因为shuffle阶段的hash操作,只要key的hash结果是一样的,它们就会被拉到同一个reduce中。
解决方案:
第一种:可以直接不让null值参与join操作,即不让null值有shuffle阶段
SELECT *
FROM log a
JOIN users b
ON a.user_id IS NOT NULL
AND a.user_id = b.user_id
UNION ALL
SELECT *
FROM log a
WHERE a.user_id IS NULL;
第二种:因为null值参与shuffle时的hash结果是一样的,那么我们可以给null值随机赋值,这样它们的hash结果就不一样,就会进到不同的reduce中:
SELECT *
FROM log a
LEFT JOIN users b ON CASE
WHEN a.user_id IS NULL THEN concat('hive_', rand())
ELSE a.user_id
END = b.user_id;
2. 不同数据类型引发的数据倾斜
对于两个表join,表a中需要join的字段key为int,表b中key字段既有string类型也有int类型。当按照key进行两个表的join操作时,默认的Hash操作会按int型的id来进行分配,这样所有的string类型都被分配成同一个id,结果就是所有的string类型的字段进入到一个reduce中,引发数据倾斜。
解决方案:
如果key字段既有string类型也有int类型,默认的hash就都会按int类型来分配,那我们直接把int类型都转为string就好了,这样key字段都为string,hash时就按照string类型分配了:
SELECT *
FROM users a
LEFT JOIN logs b ON a.usr_id = CAST(b.user_id AS string);
3. 不可拆分大文件引发的数据倾斜
当集群的数据量增长到一定规模,有些数据需要归档或者转储,这时候往往会对数据进行压缩;当对文件使用GZIP压缩等不支持文件分割操作的压缩方式,在日后有作业涉及读取压缩后的文件时,该压缩文件只会被一个任务所读取。如果该压缩文件很大,则处理该文件的Map需要花费的时间会远多于读取普通文件的Map时间,该Map任务会成为作业运行的瓶颈。这种情况也就是Map读取文件的数据倾斜。
解决方案:
这种数据倾斜问题没有什么好的解决方案,只能将使用GZIP压缩等不支持文件分割的文件转为bzip和zip等支持文件分割的压缩方式。
所以,我们在对文件进行压缩时,为避免因不可拆分大文件而引发数据读取的倾斜,在数据压缩的时候可以采用bzip2和Zip等支持文件分割的压缩算法。
4. 数据膨胀引发的数据倾斜
在多维聚合计算时,如果进行分组聚合的字段过多,如下:
select a,b,c,count(1)from log group by a,b,c with rollup;
注:对于最后的
with rollup
关键字不知道大家用过没,with rollup是用来在分组统计数据的基础上再进行统计汇总,即用来得到group by的汇总信息。
如果上面的log表的数据量很大,并且Map端的聚合不能很好地起到数据压缩的情况下,会导致Map端产出的数据急速膨胀,这种情况容易导致作业内存溢出的异常。如果log表含有数据倾斜key,会加剧Shuffle过程的数据倾斜。
解决方案:
可以拆分上面的sql,将with rollup
拆分成如下几个sql:
SELECT a, b, c, COUNT(1)
FROM log
GROUP BY a, b, c;
SELECT a, b, NULL, COUNT(1)
FROM log
GROUP BY a, b;
SELECT a, NULL, NULL, COUNT(1)
FROM log
GROUP BY a;
SELECT NULL, NULL, NULL, COUNT(1)
FROM log;
但是,上面这种方式不太好,因为现在是对3个字段进行分组聚合,那如果是5个或者10个字段呢,那么需要拆解的SQL语句会更多。
在Hive中可以通过参数 hive.new.job.grouping.set.cardinality
配置的方式自动控制作业的拆解,该参数默认值是30。表示针对grouping sets/rollups/cubes这类多维聚合的操作,如果最后拆解的键组合大于该值,会启用新的任务去处理大于该值之外的组合。如果在处理数据时,某个分组聚合的列有较大的倾斜,可以适当调小该值。
5. 表连接时引发的数据倾斜
两表进行普通的repartition join时,如果表连接的键存在倾斜,那么在 Shuffle 阶段必然会引起数据倾斜。
解决方案:
通常做法是将倾斜的数据存到分布式缓存中,分发到各个 Map任务所在节点。在Map阶段完成join操作,即MapJoin,这避免了 Shuffle,从而避免了数据倾斜。
MapJoin是Hive的一种优化操作,其适用于小表JOIN大表的场景,由于表的JOIN操作是在Map端且在内存进行的,所以其并不需要启动Reduce任务也就不需要经过shuffle阶段,从而能在一定程度上节省资源提高JOIN效率。
在Hive 0.11版本之前,如果想在Map阶段完成join操作,必须使用MAPJOIN来标记显示地启动该优化操作,由于其需要将小表加载进内存所以要注意小表的大小。
如将a表放到Map端内存中执行,在Hive 0.11版本之前需要这样写:
select /* +mapjoin(a) */ a.id , a.name, b.age
from a join b
on a.id = b.id;
如果想将多个表放到Map端内存中,只需在mapjoin()中写多个表名称即可,用逗号分隔,如将a表和c表放到Map端内存中,则 /* +mapjoin(a,c) */
。
在Hive 0.11版本及之后,Hive默认启动该优化,也就是不在需要显示的使用MAPJOIN标记,其会在必要的时候触发该优化操作将普通JOIN转换成MapJoin,可以通过以下两个属性来设置该优化的触发时机:
hive.auto.convert.join=true
默认值为true,自动开启MAPJOIN优化。
hive.mapjoin.smalltable.filesize=2500000
默认值为2500000(25M),通过配置该属性来确定使用该优化的表的大小,如果表的大小小于此值就会被加载进内存中。
注意:使用默认启动该优化的方式如果出现莫名其妙的BUG(比如MAPJOIN并不起作用),就将以下两个属性置为fase手动使用MAPJOIN标记来启动该优化:
hive.auto.convert.join=false
(关闭自动MAPJOIN转换操作)
hive.ignore.mapjoin.hint=false
(不忽略MAPJOIN标记)
再提一句:将表放到Map端内存时,如果节点的内存很大,但还是出现内存溢出的情况,我们可以通过这个参数 mapreduce.map.memory.mb
调节Map端内存的大小。
6. 确实无法减少数据量引发的数据倾斜
在一些操作中,我们没有办法减少数据量,如在使用 collect_list 函数时:
select s_age,collect_list(s_score) list_score
from student
group by s_age
collect_list:将分组中的某列转为一个数组返回。
在上述sql中,s_age有数据倾斜,但如果数据量大到一定的数量,会导致处理倾斜的Reduce任务产生内存溢出的异常。
collect_list输出一个数组,中间结果会放到内存中,所以如果collect_list聚合太多数据,会导致内存溢出。
有小伙伴说这是 group by 分组引起的数据倾斜,可以开启hive.groupby.skewindata
参数来优化。我们接下来分析下:
开启该配置会将作业拆解成两个作业,第一个作业会尽可能将Map的数据平均分配到Reduce阶段,并在这个阶段实现数据的预聚合,以减少第二个作业处理的数据量;第二个作业在第一个作业处理的数据基础上进行结果的聚合。
hive.groupby.skewindata
的核心作用在于生成的第一个作业能够有效减少数量。但是对于collect_list这类要求全量操作所有数据的中间结果的函数来说,明显起不到作用,反而因为引入新的作业增加了磁盘和网络I/O的负担,而导致性能变得更为低下。
解决方案:
这类问题最直接的方式就是调整reduce所执行的内存大小。
调整reduce的内存大小使用mapreduce.reduce.memory.mb
这个配置。
--END--
Hive千亿级数据倾斜解决方案的更多相关文章
- 挑战海量数据:基于Apache DolphinScheduler对千亿级数据应用实践
点亮 ️ Star · 照亮开源之路 GitHub:https://github.com/apache/dolphinscheduler 精彩回顾 近期,初灵科技的大数据开发工程师钟霈合在社区活动的线 ...
- Spark数据倾斜解决方案及shuffle原理
数据倾斜调优与shuffle调优 数据倾斜发生时的现象 1)个别task的执行速度明显慢于绝大多数task(常见情况) 2)spark作业突然报OOM异常(少见情况) 数据倾斜发生的原理 在进行shu ...
- K2签约龙光地产,为集团实现“千亿目标”保驾护航
随着房地产行业步入成熟期,行业整合及转型速度变快,房企要在数字经济的背景下实现稳步发展,企业信息化建设是其中的重要一环.此次龙光地产选择与K2携手,用统一流程平台为集团保驾护航,向实现千亿目标迈进. ...
- spak数据倾斜解决方案
数据倾斜解决方案 数据倾斜的解决,跟之前讲解的性能调优,有一点异曲同工之妙. 性能调优中最有效最直接最简单的方式就是加资源加并行度,并注意RDD架构(复用同一个RDD,加上cache缓存).相对于前面 ...
- 通用技术 mysql 亿级数据优化
通用技术 mysql 亿级数据优化 一定要正确设计索引 一定要避免SQL语句全表扫描,所以SQL一定要走索引(如:一切的 > < != 等等之类的写法都会导致全表扫描) 一定要避免 lim ...
- 千亿级SaaS市场:企业级服务的必争之地
2015年企业级服务融资案例数量飙升,大额融资频现.不少企业纷纷涉足企业级服务市场,其中,以IM为主打的阿里钉钉,以企业CRM为主的纷享逍客高调进入人们的视野,以产品管理为核心.集成多种工具服务的iC ...
- 最完整的数据倾斜解决方案(spark)
一.了解数据倾斜 数据倾斜的原理: 在执行shuffle操作的时候,按照key,来进行values的数据的输出,拉取和聚合.同一个key的values,一定是分配到一个Reduce task进行处理. ...
- AI反欺诈:千亿的蓝海,烫手的山芋|甲子光年
不久前,一家业界领先的机器学习公司告诉「甲子光年」:常有客户带着迫切的反欺诈需求主动找来,但是,我们不敢接. 难点何在? 作者|晕倒羊 编辑|甲小姐 设计|孙佳栋 生死欺诈 企业越急速发展,越容易产生 ...
- ArcGIS API for Silverlight之配准JPG图片地图文字倾斜解决方案
原文:ArcGIS API for Silverlight之配准JPG图片地图文字倾斜解决方案 根据实际JPG图片进行配准后,发布的地图,利用ArcGIS API for Silverlight在网页 ...
随机推荐
- secure 审计暴力登陆
文件路径 cd /var/log -rw------- 1 root root 1200063 Aug 10 20:04 secure 做应急响应,或者做脚本监控的时候,都可以参考如下特征 ... A ...
- 六. SpringCloud网关
1. Gateway概述 1.1 Gateway是什么 服务网关还可以用Zuul网关,但是Zuul网关由于一些维护问题,所以这里我们学习Gateway网关,SpringCloud全家桶里有个很重要的组 ...
- 解决.NET Core Ajax请求后台传送参数过大请求失败问题
解决.NET Core Ajax请求后台传送参数过大请求失败问题 今天在项目上遇到一个坑, 在.Net Core中通过ajax向mvc的controller传递对象时,控制器(controller)的 ...
- Codeforces Round #699 (Div. 2)
A Space Navigation #include <bits/stdc++.h> using namespace std; typedef long long LL; #define ...
- POJ - 1163 The Triangle 【动态规划】
一.题目 The Triangle 二.分析 动态规划入门题. 状态转移方程$$DP[i][j] = A[i][j] + max(DP[i-1][j], DP[i][j])$$ 三.AC代码 1 #i ...
- GreenDao3.2使用详解(增,删,改,查,升级)
首先看一下效果图: 项目结构如下图所示: 第一步:在build中添加配置如下: projet 目录下的build.gradle dependencies { classpath 'org.greenr ...
- IPFS矿机封装原理解释
近期无论是从媒体.新闻的高度曝光,还是市场拓展的覆盖度来看,IPFS 俨然成为今年最值得关注的行业话题与入场趋势.对于许多刚了解 IPFS 的小白来说,矿机的「封装」.「有效算力」和「原值算力」这些概 ...
- P1162_填涂颜色(JAVA语言)(速看!全洛谷最暴力解法!QAQ)
思路:看了看数据n<=30,于是我们可以暴力求解(主要是BFS学的不咋地~2333).枚举每个0的位置,看上下左右四个方向上是否都有1.都有1的话说明被1包围,即在闭合圈的内部,开个数组标记一下 ...
- 获得PyInstaller打包exe的py源码
参考链接:https://laucyun.com/33359ed9f725529ac9b606d054c8459d.html way1:pyi-archive_viewer 提取pyc,uncomp ...
- 从新建文件夹开始构建UtopiaEngine(1)
序言 在苦等了半年多之后,我终于开始了向往已久的实时NPR游戏引擎项目--Utopia Engine,这半年多一直为了构建这个引擎在做很多准备:多线程.动态链接库.脚本引擎.立即渲染GUI--统统吃了 ...