1.plotly包

动态散点图

library(plotly)

# 交互散点图
plot_ly(data=iris,
x=~Sepal.Length,
y=~Petal.Length,
marker=list(size=10,
color='rgba(255,182,193,.9)',
line=list(color='rgba(152,0,0,.8)',
width=2))) %>%
layout(title='Styled Scatter',
yaxis=list(zeroline=FALSE),
xaxis=list(zeroline=FALSE)) #多维数据,添加标签
plot_ly(mpg,x=~hwy,y=~displ,color=~factor(cyl),
text=~paste('Model:',model)) %>%
layout(title='MPG data',font=list(family='Times New Roman',
size=13,color='forestgreen')) #参数
plot_ly(data=iris,x=~Sepal.Length,y=~Petal.Length,
type = 'scatter',#lines/markers/text/none
mode='makers',
symbol = ~Species,
#点类型
symbols = c('circle','x','o'),color = I('black'),
marker=list(size=10))
#点连线形式
trace0 <- rnorm(100,mean=5)
trace1 <- rnorm(100,mean=0)
trace2 <- rnorm(100,mean=-5)
x <- c(1:100)
data <- data.frame(x,trace0,trace1,trace2) #第一张散点图以线图形式展示
plot_ly(data,x=~x,y=~trace0,
name = 'trace 0',type = 'scatter',
mode='lines') %>%
#第二张以点连线形式展示
add_trace(y=~trace1,name='trace 1',
mode='lines+markers') %>%
#第三张普通散点图
add_trace(y=~trace2,name='trace 2',
mode='markers') %>%
layout(xaxis=list(zeroline=FALSE)) #add_trace/add_histogram/add_boxplot/add_text

其他动态图

#动态气泡图
# 动态线图
# 动态条形图
# 动态直方图
# 动态盒形图
# 动态误差条图
# 动态饼图和戒指图

2. recharts包

接近基础绘图语法。

散点图

#devtools::install_github('taiyun/recharts')
library(recharts) #散点图
ePoints(iris[,3:5],series = ~Species) ePoints(iris[,3:5],
xvar=~Petal.Length,
yvar=~Petal.Width,
series = ~Species,
xlab.name = 'Petal Length',
ylab.name = 'Petal Width',
xlab.namePosition = 'end',
ylab.namePosition = 'end',
title = 'IRIS data',
title.x = 'center',
title.y = 'top',
legend.orient = 'vertical',
legend.x = 'right',
legend.y = 'center')

其他动态图

#线图
names(mtcars)
eLine(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear) #条形图
eBar(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear) #饼图
x=runif(6)
names(x)=LETTERS[1:6]
ePie(x,type='pie',title = 'PIE')
#玫瑰图
ePie(x,type = 'rose',roseType = 'radias',title = 'Rose plot') #雷达图
eRadar(mtcars,xvar = ~cyl,yvar = ~mpg,series = ~gear) #漏斗图、面积图等。。。

3. rChart包

语法近似于lattice绘图系统。在R中实现Polychart、Morris、NVD3等多个js绘图库。

https://github.com/ramnathv/rCharts

没安装上

Ploychart

4.threejs包

3D显示功能。

#install.packages('threejs')
library(threejs) #三维散点图
N <- 100
i <- sample(3,N,replace = TRUE)
x <- matrix(rnorm(N*3),ncol=3)
lab <- c('small','bigger','biggest')
scatterplot3js(x,color = rainbow(N),labels=lab[i],
size=i,renderer = "canvas") #三维地图
library(maps)
data("world.cities",package = 'maps')
cities <- world.cities[order(world.cities$pop,decreasing = TRUE)[1:1000],]
value <- 100*cities$pop/max(cities$pop)
col <- colorRampPalette(c('cyan','lightgreen'))(10)[floor(10*value/100)+1]
threejs::globejs(lat = cities$lat,
long=cities$long,
value=value,
color = col,
atmosphere = TRUE)

5.timevis包

#绘制动态时间轴,展示时间节点事件
library(timevis)
timevis(data.frame(id=1:3,
content=c('one','two','three'),
start=c('2016-01-10','2016-01-14','2016-01-19'),
end=c(NA,'2016-01-18',NA),
type=c('point','background','box')))

6.dygraphs包

#动态时间序列
library(dygraphs)
lungDeaths <- cbind(mdeaths,fdeaths)
dygraph(lungDeaths)
#选择特定时间
dygraph(lungDeaths) %>%
dyRangeSelector(dateWindow = c('1975-06-01','1978-12-31'))

7.leaflet包

js开源交互式地图包,在R中利用哦html5显示。

#install.packages('leaflet')
library(leaflet) f <- leaflet() #初始化
y <- addTiles(f) #调用地图底图
addMarkers(y,
lng = 121.445,
lat=31.1980,
popup = '复旦大学上海医学院') #添加标记 #用管道符
leaflet() %>% addTiles() %>%
addMarkers(lng = 121.445,lat = 31.1980,popup = '复旦大学医学院')

功能强大,不再演示。

R语言与医学统计图形-【31】动态交互绘图的更多相关文章

  1. R语言与医学统计图形【1】par函数

    张铁军,陈兴栋等 著 R语言基础绘图系统 基础绘图包之高级绘图函数--par函数 基础绘图包并非指单独某个包,而是由几个R包联合起来的一个联盟,比如graphics.grDevices等. 掌握par ...

  2. R语言与医学统计图形【6】低级绘图函数

    R语言基础绘图系统 基础绘图包之低级绘图函数--定义坐标轴.图例.文本 低级绘图函数:本身不具备图形绘制能力,只是在已有图形基础上添加元素. 函数 功能 arrows 添加箭头 axis 坐标轴 bo ...

  3. R语言与医学统计图形【5】饼图、条件图

    R语言基础绘图系统 基础图形--饼图.克利夫兰点图.条件图 6.饼图 pie(rep(1,26),col=rainbow(26), labels = LETTERS[1:26], #标签 radius ...

  4. R语言与医学统计图形【4】直方图、金字塔图

    R语言基础绘图系统 基础图形--直方图.金字塔图 3.直方图 参数设置及比较. op <- par(mfrow=c(2,3)) data <- rnorm(100,10,5) hist(d ...

  5. R语言与医学统计图形【3】条形图、误差图

    R语言基础绘图系统 基础图形--条形图.误差图 3.条形图 barplot接收的数据是矩阵而非数据框. data <- sample(c(50:80),5) barplot(data,col=h ...

  6. R语言与医学统计图形【2】散点图、盒形图

    R语言基础绘图系统 基础图形--散点图.盒形图 plot是一个泛型函数(generic method),对于不同的数据绘制不同的图形. par函数的大部分参数在plot中通用. 1.散点图 plot绘 ...

  7. R语言与医学统计图形-【28】ggplot2扩展包ggrepel、ggsci、gganimate、ggpubr

    ggplot2绘图系统--扩展包ggrepel.ggsci.gganimate.ggpubr等 部分扩展包可在CRAN直接下载,有些需借助devtools包从Github下载. 1. ggrepel包 ...

  8. R语言与医学统计图形【8】颜色的选取

    R语言基础绘图系统 基础绘图包之低级绘图函数--内置颜色. 1.内置颜色选取 功能657种内置颜色.colors() 调色板函数:palette(), rgb(), rainbow(). palett ...

  9. R语言与医学统计图形【7】低级绘图函数

    R语言基础绘图系统 基础绘图包之低级绘图函数--气泡图.一页多图.背景网格.添加线条和散点.数学表达式 4.气泡图 symbols是高级绘图函数,可在图上添加标记,标记的形状包括:circles,sq ...

随机推荐

  1. maven编码 gbk 的不可映射字符

    解决这个问题的思路: 在maven的编译插件中声明正确的字符集编码编码--编译使用的字符集编码与代码文件使用的字符集编码一致!! 安装系统之后,一般中文系统默认字符集是GBK.我们安装的软件一般都继承 ...

  2. 浅析ReDoS的原理与实践

    转载于http://www.freebuf.com/articles/network/124422.html ReDoS(Regular expression Denial of Service) 正 ...

  3. spring security整合QQ登录

    最近在了解第三方登录的内容,尝试对接了一下QQ登录,此次记录一下如何实现QQ登录的过程,在这个例子中是和spring secuirty整合的,不整合spring secuirty也是一样的. 需求: ...

  4. Noip模拟29(瞎眼忌) 2021.8.3

    T1 最长不下降子序列 在此记录自己的瞎眼... 考场上像一个傻$der$,自己为了防范上升序列和不下降序列的不同特意的造了一组$hack$数据来卡自己:(第一行是序列长度,第二行是序列) 6 1 5 ...

  5. 梦开始的地方(Noip模拟3) 2021.5.24

    T1 景区路线规划(期望dp/记忆化搜索) 一看题目发现肯定是概率期望题,再仔细想想这三天做的题,就知道是个期望dp. 考试思路(错): 因为聪聪与可可的10分打法根深蒂固,导致在考试时想到了用深搜( ...

  6. [火星补锅] 非确定性有穷状态决策自动机练习题Vol.1 T3 第K大区间 题解

    前言: 老火星人了 解析: 很妙的二分题.如果没想到二分答案.. 很容易想到尝试用双指针扫一下,看看能不能统计答案. 首先,tail指针右移时很好处理,因为tail指针右移对区间最大值的影响之可能作用 ...

  7. 计算机网络传输层之TCP拥塞控制(慢开始与拥塞避免、快重传和快恢复)

    文章转自:https://blog.csdn.net/weixin_43914604/article/details/105532044 学习课程:<2019王道考研计算机网络> 学习目的 ...

  8. 【做题记录】CF1444A Division

    CF1444A Division 题意: 给定 \(t\) 组询问,每组给两个数 \(p_i\) 和 \(q_i\) ,找出最大的整数 \(x_i\) ,要求 \(p_i\) 可被 \(x_i\) 整 ...

  9. Spring Security:简单的保护一个SpringBoot应用程序(总结)

    Spring Security 在 Java类中的配置 在 Spring Security 中使用 Java配置,可以轻松配置 Spring Security 而无需使用 XML . 在Spring ...

  10. Go语言核心36讲(Go语言实战与应用三)--学习笔记

    25 | 更多的测试手法 在本篇文章,我会继续为你讲解更多更高级的测试方法.这会涉及testing包中更多的 API.go test命令支持的,更多标记更加复杂的测试结果,以及测试覆盖度分析等等. 前 ...