CodeForce-813B The Golden Age(数学+枚举)
The Golden Age
题目大意:如果一个数t=x^a+y^b(a,b都是大于等于0的整数)那就是一个unlucky数字。给你x,y,l,r(2 ≤ x, y ≤ 10^18, 1 ≤ l ≤ r ≤ 10^18),求出l到r内没有unlucky数字的最小区间。
解题思路:可以知道x,y最多也不会超过60次方(2^60>1e18),所以可以直接枚举x^a+y^b的值存到vector里,然后排序,找出间v[i+1]-v[i]-1(因为两端都是unlucky数字所以要两个端点都不算在长度内)最大的区间即可。要注意vector为空和两个端点的特判。还有数字的溢出问题,这个没办法直接判断是否溢出,可以通过使用一个d=r,比如每次x次方加一的时候,就将d/x,当d==0说明x^a已经超出r的范围了。
#include <cstdio>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <queue>
// #define _ ios::sync_with_stdio(false)
// #define cin.tie(0)
using namespace std;
// #define rep(i,x,y) for(int i=x;i<y;i++)
typedef long long ll;
const int MAXN=2e5+5; vector<ll> v; int main()
{
ll x,y,l,r;
cin>>x>>y>>l>>r;
ll tx,ty;
ll d1=r;
for(int i=0;i<=61;i++)
{
if(i!=0)
d1/=x;
if(d1==0)
break;
if(i==0)
tx=1;
else
tx*=x;
ll d2=r;
for(int j=0;j<=61;j++)
{
if(j!=0)
d2/=y;
if(d2==0)
break;
if(j==0)
ty=1;
else
ty*=y;
if(tx+ty>=l&&tx+ty<=r)
v.push_back(tx+ty);
}
} if(!v.size())
{
cout<<r-l+1<<endl;
return 0;
} ll ans=0;
sort(v.begin(),v.end());
for(int i=0;i<v.size();i++)
{
if(i==0&&v[0]!=l)
ans=max(ans,v[i]-l);
if(i==v.size()-1)
ans=max(ans,r-v[i]);
else
ans=max(ans,v[i+1]-v[i]-1);
}
cout<<ans<<endl;
return 0;
}
CodeForce-813B The Golden Age(数学+枚举)的更多相关文章
- Codeforces 813B The Golden Age(数学+枚举)
题目大意:如果一个数t=x^a+y^b(a,b都是大于等于0的整数)那就是一个unlucky数字.给你x,y,l,r(2 ≤ x, y ≤ 10^18, 1 ≤ l ≤ r ≤ 10^18),求出l到 ...
- The Golden Age CodeForces - 813B (数学+枚举)
Unlucky year in Berland is such a year that its number n can be represented as n = xa + yb, where a ...
- Why The Golden Age Of Machine Learning is Just Beginning
Why The Golden Age Of Machine Learning is Just Beginning Even though the buzz around neural networks ...
- 【数学】codeforces B. The Golden Age
http://codeforces.com/contest/813/problem/B [题意] 满足n=x^a+y^b的数字为不幸运数字,a,b都是非负整数: 求闭区间[l,r]上的最长的连续幸运数 ...
- bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举
1257: [CQOI2007]余数之和sum Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 1779 Solved: 823[Submit][Sta ...
- 2-08. 用扑克牌计算24点(25) (ZJU_PAT 数学 枚举)
题目链接:http://pat.zju.edu.cn/contests/ds/2-08 一副扑克牌的每张牌表示一个数(J.Q.K分别表示11.12.13,两个司令都表示6).任取4张牌.即得到4个1~ ...
- FZU 2125 简单的等式 【数学/枚举解方程式】
现在有一个等式如下:x^2+s(x,m)x-n=0.其中s(x,m)表示把x写成m进制时,每个位数相加的和.现在,在给定n,m的情况下,求出满足等式的最小的正整数x.如果不存在,请输出-1. Inpu ...
- 【数学+枚举】OpenJ_POJ - C17J Pairs
https://vjudge.net/contest/171652#problem/J [题意] 问有多少个正整数对(x,y),使得存在正整数p,q满足 1 <= T <= 15 1 &l ...
- Educational Codeforces Round 22 B. The Golden Age(暴力)
题目链接:http://codeforces.com/contest/813/problem/B 题意:就是有一个数叫做不幸运数,满足题目的 n = x^a + y^b,现在给你一个区间[l,r],让 ...
随机推荐
- 详细讲讲netty的pipiline!
前言 提到 Netty 首当其冲被提起的肯定是支持它承受高并发的线程模型,说到线程模型就不得不提到 NioEventLoopGroup 这个线程池,接下来进入正题. 线程模型 首先来看一段 Netty ...
- sqlplus登录用户被锁问题
oracle有三个默认的用户名和密码: 1.用户名:sys密码:change_on_install 2.用户名:system密码:manager 3.用户名:scott密码:tiger 当登录用户 ...
- k8s之数据存储-配置存储
ConfigMap configmap是一种比较特殊的存储卷,它的主要作用是用来存储配置信息的 创建configmap.yaml,内容如下 apiVersion: v1 kind: ConfigMap ...
- Echarts 展示两条动态数据曲线
利用Echarts 展示两条动态数据曲线,每1秒刷新一下数据,在echart官网例子基础上修改,修改了仿真数据的生成方式.生成数量,曲线数量,最总效果图如下: 详细代码如下: 遇到的主要问题点, 1, ...
- Redis配置及攻击利用
Redis配置及攻击利用 Redis及其安全配置 Redis介绍 redis默认会绑定在 0.0.0.0:6379,如果没有进行采用相关的策略,比如添加防火墙规则避免其他非信任来源 ip 访问等,这样 ...
- 【XSS-labs】level 6-10
Level 6 查看源码:对URL中的传参进行了HTML实体化转义,搜索框中的值对 src\onxxxxx\data\href进行了限制. 采用大小写绕过,在搜索框输入payload,注意闭合inpu ...
- miniFTP项目实战五
项目简介: 在Linux环境下用C语言开发的Vsftpd的简化版本,拥有部分Vsftpd功能和相同的FTP协议,系统的主要架构采用多进程模型,每当有一个新的客户连接到达,主进程就会派生出一个ftp服务 ...
- [TcaplusDB知识库]数据库支撑底盘引擎计算层介绍
在上次的TcaplusDB知识库中,TcaplusDB君为大家讲解了TcaplusDB所用的基于HASH表的Key-value存储引擎TXHDB.存储引擎作为数据库的支撑底盘,其重要性无可置疑,而在本 ...
- Spring系列之HikariCP连接池
上两篇文章,我们讲到了Spring中如何配置单数据源和多数据源,配置数据源的时候,连接池有很多选择,在SpringBoot 1.0中使用的是Tomcat的DataSource,在SpringBoot ...
- 熟悉而陌生的新朋友——IAsyncDisposable
本文作者--句幽 在.NET Core 3.0的版本更新中,官方我们带来了一个新的接口 IAsyncDisposable. 小伙伴一看肯定就知道,它和.NET中原有的IDisposable接口肯定有着 ...