题目当中有三条限制,我们来逐一考虑。对于第一条限制,每次走动的增加量 \(x_i \le M_x, y_i \le M_y\),可以发现一共走的步数是确定的,那么就相当于解这样两个方程组:

\[x_1 + x_2 + \cdots x_R = Tx
\]
\[y_1 + y_2 + \cdots y_R = Ty
\]

其中 \(x_i \le M_x, y_i \le M_y\),其实是两个独立的方程,最终解的数量实际上是上下两个方程解的数量相乘的结果,于是我们已第一个方程的解为例来思考。可以发现直接计算解的数量是不好算的,但钦定一些位置超过限制其他位置随意的方案是很好算的,于是我们可以令 \(f_i\) 表示钦定有 \(i\) 个位置不合法其他位置随意的方案,令 \(g_i\) 表示恰好有 \(i\) 个位置不合法的方案,那么有:

\[\begin{aligned}
f_i &= \dbinom{R}{i} \times \dbinom{Tx - (Mx + 1) \times i + R - 1}{R - 1}\\
&= \sum\limits_{j = i} ^ R \dbinom{j}{i} g_j
\end{aligned}
\]

根据二项式反演:

\[g_0 = \sum\limits_{i = 0} ^ R (-1) ^ i \dbinom{R}{i} \times \dbinom{Tx - (Mx + 1) \times i + R - 1}{R - 1}
\]

再来考虑第二个条件,不能出现任意一个位置使得 \(x_i = 0, y_i = 0\),同样我们发现还是可以使用二项式定理,令 \(f_i\) 表示钦定有 \(i\) 个位置 \(x_i = 0, y_i = 0\),其他位置随意且满足第一条限制的方案,\(g_i\) 为恰好的方案,那么有:

\[\begin{aligned}
f_i &= \dbinom{R}{i} \sum\limits_{i = 0} ^ {R - i} (-1) ^ i \dbinom{R - i}{i} \times \dbinom{Tx - (Mx + 1) \times i + R - i - 1}{R - i - 1}\\
&= \sum\limits_{j = i} ^ R \dbinom{j}{i} g_j
\end{aligned}
\]

根据二项式反演可得:

\[g_0 = \sum\limits_{i = 0} ^ R (-1) ^ i \dbinom{R}{i} \sum\limits_{i = 0} ^ {R - i} (-1) ^ i \dbinom{R - i}{i} \times \dbinom{Tx - (Mx + 1) \times i + R - i - 1}{R - i - 1}
\]

再来考虑第三条限制,同样可以使用二项式反演,只不过这里钦定的方案可能不是那么好算了。但是我们能发现钦定第三类不合法后这个位置将会被占用,那么我们可以一次考虑每条限制,那么一个 \(dp\) 就可以统计出这些方案,令 \(dp_{i, j, k}\) 表示当前考虑完前 \(i\) 种限制,当前已经钦定了 \(j\) 个位置,当前钦定位置上的增量之和为 \(k\) 的方案,那么同样我们枚举当前新哪增那些位置非法,有(令 \(a_i = k_i\)):

\[dp_{i, j, k} = \sum\limits_{l = 0} ^ {\min\{j, \frac{k}{a_i}\}} \dbinom{R - j + l}{l} dp_{i - 1, j - l, k - l \times a_i}
\]

但是这个 \(dp\) 的复杂度很高,因为第三维涉及到枚举走过的步数之和,但题目当中给了一个条件,所有限制的步数都是 \(G\) 的倍数,那么实际上我们只需要存储 \(k = \frac{k}{G}\) 即可,于是就可以将上面哪个 \(dp\) 的状态改写一下,转移基本没有变。可以发现这个 \(dp\) 第一维枚举的复杂度为 \(K\)(下面称其为 \(n\)),第二维的复杂度为 \(\min\{R, \frac{\min\{T_x, T_y\}}{G}\}\),第三维的枚举上限为 \(\frac{\min\{T_x, T_y\}}{G}\) 转移的复杂度也最多为 \(\frac{\min\{T_x, T_y\}}{G}\) 因此这个 \(dp\) 的复杂度是 \(O(n\min\{R, \frac{\min\{T_x, T_y\}}{G}\}(\frac{\min\{T_x, T_y\}}{G}) ^ 2) \le 50 \times 100 ^ 3 = 5 \times 10 ^ 7\)。

但是需要注意的是,我们最后二项式反演的时候,不能直接做两维的二项式反演,因为我们并不能保证那些恰好选择了 \(j\) 个位置非法的情况下有 \(i\) 个位置的增量之和为 \(k\)。因此,我们需要将所有钦定 \(i\) 个位置非法的方案相加再进行容斥。令 \(F_i\) 为钦定有 \(i\) 个位置非法的方案,那么有:

\[F_i = \sum\limits_{j = i} ^ {\frac{\min\{T_x, T_y\}}{G}} dp_{n, i, j} \times g_{R - i, j}
\]

其中 \(g_{i, j}\) 表示走 \(i\) 步,已经使用了 \(j \times G\) 步的满足前两条限制的方案。再令 \(f_{i, j}\) 表示走 \(i\) 步,已经使用了 \(j \times G\) 步的满足第一条限制的方案,则:

\[g_{i, j} = \sum\limits_{k = 0} ^ i (-1) ^ k \dbinom{i}{k} f_{i - k, j}
\]

可以发现有用的 \(f_{i, j}\) 只有 \(R \times \frac{\min\{T_x, T_y\}}{G}\) 个,每次计算需要 \(R\) 次,因此计算出所有可用的 \(f\) 总共的复杂度为 \(O(R ^ 2 \times \frac{\min\{T_x, T_y\}}{G})\) 还能承受。而可用的 \(g\) 也只有 \(R \times \frac{\min\{T_x, T_y\}}{G}\) 个,预处理出 \(f\) 后复杂度也可以做到 \(O(R ^ 2 \times \frac{\min\{T_x, T_y\}}{G})\)。最后总复杂度 \(O(R ^ 2 \times \frac{\min\{T_x, T_y\}}{G} + n \times (\frac{\min\{T_x, T_y\}}{G}) ^ 3)\) 可以通过本题。

一些坑点

  • 每次二项式反演一定要认真推式子,不然容易出错

  • \(f_0, g_0\) 的情况需要特判

  • 组合数的取值范围到 \(2 \times 10 ^ 6\)

  • 注意枚举 \(dp\) 时第二维和第三维的上限不同

#include<bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for(int i = l; i <= r; ++i)
const int N = 1000000 + 5;
const int M = 100 + 5;
const int K = 1000 + 5;
const int Mod = 1000000000 + 7;
int n, R, G, L1, L2, tx, ty, Tx, Ty, Mx, My, ans;
int a[M], k[M], F[M], fac[N * 2], inv[N * 2], f[K][M], g[K][M], dp[M][M][M];
int read(){
char c; int x = 0, f = 1;
c = getchar();
while(c > '9' || c < '0'){ if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b){
return (a += b) >= Mod ? a - Mod : a;
}
int Dec(int a, int b){
return (a -= b) < 0 ? a + Mod : a;
}
int Mul(int a, int b){
return 1ll * a * b % Mod;
}
int Qpow(int a, int b){
int ans = 1;
while(b){
if(b & 1) ans = Mul(ans, a);
a = Mul(a, a), b >>= 1;
}
return ans;
}
int C(int n, int m){
if(n < m) return 0;
return Mul(fac[n], Mul(inv[m], inv[n - m]));
}
int main(){
tx = read(), ty = read(), Mx = read(), My = read(), R = read(), G = read();
fac[0] = inv[0] = 1;
rep(i, 1, max(tx, ty) + R) fac[i] = Mul(fac[i - 1], i), inv[i] = Qpow(fac[i], Mod - 2);
n = read();
rep(i, 1, n) a[i] = read();
sort(a + 1, a + n + 1);
n = unique(a + 1, a + n + 1) - a - 1;
L2 = min(tx, ty) / G, L1 = min(R, L2);
if(tx == ty && (tx % G == 0)) f[0][tx / G] = 1;
rep(i, 1, R) rep(j, 0, L2){
int S1 = 0, S2 = 0; Tx = tx - j * G, Ty = ty - j * G; if(Tx < 0 || Ty < 0) continue;
rep(k, 0, i){
if(k & 1) S1 = Dec(S1, Mul(C(i, k), C(Tx - (Mx + 1) * k + i - 1, i - 1)));
else S1 = Inc(S1, Mul(C(i, k), C(Tx - (Mx + 1) * k + i - 1, i - 1)));
if(k & 1) S2 = Dec(S2, Mul(C(i, k), C(Ty - (My + 1) * k + i - 1, i - 1)));
else S2 = Inc(S2, Mul(C(i, k), C(Ty - (My + 1) * k + i - 1, i - 1)));
}
f[i][j] = Mul(S1, S2);
}
if(tx == ty && (tx % G == 0)) g[0][tx / G] = 1;
rep(i, 1, R) rep(j, 0, L2){
rep(k, 0, i){
if(k & 1) g[i][j] = Dec(g[i][j], Mul(C(i, k), f[i - k][j]));
else g[i][j] = Inc(g[i][j], Mul(C(i, k), f[i - k][j]));
}
}
dp[0][0][0] = 1;
rep(i, 1, n) rep(j, 0, L1) rep(k, j, L2) rep(l, 0, min(j, k * G / a[i])){
dp[i][j][k] = Inc(dp[i][j][k], Mul(C(R - j + l, l), dp[i - 1][j - l][k - l * (a[i] / G)]));
}
rep(i, 0, L1) rep(j, i, L2) F[i] = Inc(F[i], Mul(dp[n][i][j], g[R - i][j]));
rep(i, 0, L1) ans = ((i & 1) ? Dec(ans, F[i]) : Inc(ans, F[i]));
printf("%d", ans);
return 0;
}

「SDWC2018 Day1」网格的更多相关文章

  1. LOJ #6374「SDWC2018 Day1」网格

    模拟赛考过的题 当时太菜了现在也一样只拿到了$ 30$分 回来填个坑 LOJ #6374 题意 你要从$ (0,0)$走到$ (T_x,T_y)$,每次移动的坐标增量满足$ 0 \leq \Delta ...

  2. LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)

    LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...

  3. LOJ #6060. 「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set

    有趣的思博套路题,想到了基本上加上个对线性基的理解就可以过了 首先考虑到这个把数分成两半的分别异或的过程不会改变某一位上\(1\)的总个数 因此我们求出所有数的\(\operatorname{xor} ...

  4. 【LOJ6060】「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基)

    点此看题面 大致题意: 让你把\(n\)个数分成两部分,使得在两部分异或和之和最大的前提下,两个异或和中较小的那个尽量小.输出最优的较小异或和. 线性基 关于线性基,可以看一下这篇博客:线性基入门. ...

  5. 题解「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set

    题目传送门 题目大意 给出一个长度为 \(n\) 的数组,选出一些数异或之和为 \(s1\),其余数异或之和为 \(s2\),求 \(s1+s2\) 最大时 \(s1\) 的最小值. 思路 你发现如果 ...

  6. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  7. [LOJ 6031]「雅礼集训 2017 Day1」字符串

    [LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...

  8. [LOJ 6030]「雅礼集训 2017 Day1」矩阵

    [LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...

  9. [LOJ 6029]「雅礼集训 2017 Day1」市场

    [LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...

随机推荐

  1. 2019HPU-ICPC-Training-1

    byl太强了,学弟们太强了-全程被吊打,嘤嘤嘤- A题  Connecting Vertices http://codeforces.com/problemset/problem/888/F 不会 B ...

  2. SpringMVC 五大组件

    DispatcherServlet HandleMapping Controller ModeAndView ViewResolver 1.DispatcherServlet 这个控件是SpringM ...

  3. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  4. Handing Incomplete Heterogeneous Data using VAEs

    目录 概 主要内容 ELBO 网络结构 不同的数据 HI-VAE 代码 Nazabal A., Olmos P., Ghahramani Z. and Valera I. Handing incomp ...

  5. 初识python: 列表(list)

    使用列表函数写一个"购物车"小程序: #!/user/bin env python # author:Simple-Sir # 20180908 ''' 需求: 1.启动程序后,让 ...

  6. Nginx.d 设置

    #vi nginx.conf 最后一行添加 #加载conf.d内文件 include /usr/local/nginx/conf/conf.d/*.conf; 示例 cd  conf.d Vi  ** ...

  7. wordpress搭建网站更改域名后打开网页排版显示错乱解决办法

    发生的原因: 我本来已经搭建好了网站,也测试了没问题.后来更改了网站的域名,出现了这种情况. 解决办法: 需要修改数据库的options表里面的 siteurl 和 home 这两个表的内容为最新的域 ...

  8. 在 CentOS 7 上安装 GitLab

    1. 安装和配置必要的依赖库 sudo yum install -y curl policycoreutils-python openssh-server # the commands below w ...

  9. 苹果系统 的 qq浏览器 和 qq内置浏览器 无法使用 websocket 的 妥协方案

    没错,就是用不了,js脚本不执行,更别说服务器运行 onopen函数了!!! 怎么办...搞了一天,仍然找不到连接的方法!!! 幸运的是仅仅苹果系统 的无法使用 ,安卓的却可以,奇了怪了 哈皮 ,那我 ...

  10. Go语言命名规范

    一.变量命名规范 变量命名一般采用驼峰式,当遇到特有名词(缩写或简称,如DNS)的时候,特有名词根据是否私有全部大写或小写.例子: var apiClient var URLString 二.常量命名 ...