「SDWC2018 Day1」网格
题目当中有三条限制,我们来逐一考虑。对于第一条限制,每次走动的增加量 \(x_i \le M_x, y_i \le M_y\),可以发现一共走的步数是确定的,那么就相当于解这样两个方程组:
\]
\]
其中 \(x_i \le M_x, y_i \le M_y\),其实是两个独立的方程,最终解的数量实际上是上下两个方程解的数量相乘的结果,于是我们已第一个方程的解为例来思考。可以发现直接计算解的数量是不好算的,但钦定一些位置超过限制其他位置随意的方案是很好算的,于是我们可以令 \(f_i\) 表示钦定有 \(i\) 个位置不合法其他位置随意的方案,令 \(g_i\) 表示恰好有 \(i\) 个位置不合法的方案,那么有:
f_i &= \dbinom{R}{i} \times \dbinom{Tx - (Mx + 1) \times i + R - 1}{R - 1}\\
&= \sum\limits_{j = i} ^ R \dbinom{j}{i} g_j
\end{aligned}
\]
根据二项式反演:
\]
再来考虑第二个条件,不能出现任意一个位置使得 \(x_i = 0, y_i = 0\),同样我们发现还是可以使用二项式定理,令 \(f_i\) 表示钦定有 \(i\) 个位置 \(x_i = 0, y_i = 0\),其他位置随意且满足第一条限制的方案,\(g_i\) 为恰好的方案,那么有:
f_i &= \dbinom{R}{i} \sum\limits_{i = 0} ^ {R - i} (-1) ^ i \dbinom{R - i}{i} \times \dbinom{Tx - (Mx + 1) \times i + R - i - 1}{R - i - 1}\\
&= \sum\limits_{j = i} ^ R \dbinom{j}{i} g_j
\end{aligned}
\]
根据二项式反演可得:
\]
再来考虑第三条限制,同样可以使用二项式反演,只不过这里钦定的方案可能不是那么好算了。但是我们能发现钦定第三类不合法后这个位置将会被占用,那么我们可以一次考虑每条限制,那么一个 \(dp\) 就可以统计出这些方案,令 \(dp_{i, j, k}\) 表示当前考虑完前 \(i\) 种限制,当前已经钦定了 \(j\) 个位置,当前钦定位置上的增量之和为 \(k\) 的方案,那么同样我们枚举当前新哪增那些位置非法,有(令 \(a_i = k_i\)):
\]
但是这个 \(dp\) 的复杂度很高,因为第三维涉及到枚举走过的步数之和,但题目当中给了一个条件,所有限制的步数都是 \(G\) 的倍数,那么实际上我们只需要存储 \(k = \frac{k}{G}\) 即可,于是就可以将上面哪个 \(dp\) 的状态改写一下,转移基本没有变。可以发现这个 \(dp\) 第一维枚举的复杂度为 \(K\)(下面称其为 \(n\)),第二维的复杂度为 \(\min\{R, \frac{\min\{T_x, T_y\}}{G}\}\),第三维的枚举上限为 \(\frac{\min\{T_x, T_y\}}{G}\) 转移的复杂度也最多为 \(\frac{\min\{T_x, T_y\}}{G}\) 因此这个 \(dp\) 的复杂度是 \(O(n\min\{R, \frac{\min\{T_x, T_y\}}{G}\}(\frac{\min\{T_x, T_y\}}{G}) ^ 2) \le 50 \times 100 ^ 3 = 5 \times 10 ^ 7\)。
但是需要注意的是,我们最后二项式反演的时候,不能直接做两维的二项式反演,因为我们并不能保证那些恰好选择了 \(j\) 个位置非法的情况下有 \(i\) 个位置的增量之和为 \(k\)。因此,我们需要将所有钦定 \(i\) 个位置非法的方案相加再进行容斥。令 \(F_i\) 为钦定有 \(i\) 个位置非法的方案,那么有:
\]
其中 \(g_{i, j}\) 表示走 \(i\) 步,已经使用了 \(j \times G\) 步的满足前两条限制的方案。再令 \(f_{i, j}\) 表示走 \(i\) 步,已经使用了 \(j \times G\) 步的满足第一条限制的方案,则:
\]
可以发现有用的 \(f_{i, j}\) 只有 \(R \times \frac{\min\{T_x, T_y\}}{G}\) 个,每次计算需要 \(R\) 次,因此计算出所有可用的 \(f\) 总共的复杂度为 \(O(R ^ 2 \times \frac{\min\{T_x, T_y\}}{G})\) 还能承受。而可用的 \(g\) 也只有 \(R \times \frac{\min\{T_x, T_y\}}{G}\) 个,预处理出 \(f\) 后复杂度也可以做到 \(O(R ^ 2 \times \frac{\min\{T_x, T_y\}}{G})\)。最后总复杂度 \(O(R ^ 2 \times \frac{\min\{T_x, T_y\}}{G} + n \times (\frac{\min\{T_x, T_y\}}{G}) ^ 3)\) 可以通过本题。
一些坑点
每次二项式反演一定要认真推式子,不然容易出错
\(f_0, g_0\) 的情况需要特判
组合数的取值范围到 \(2 \times 10 ^ 6\)
注意枚举 \(dp\) 时第二维和第三维的上限不同
#include<bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for(int i = l; i <= r; ++i)
const int N = 1000000 + 5;
const int M = 100 + 5;
const int K = 1000 + 5;
const int Mod = 1000000000 + 7;
int n, R, G, L1, L2, tx, ty, Tx, Ty, Mx, My, ans;
int a[M], k[M], F[M], fac[N * 2], inv[N * 2], f[K][M], g[K][M], dp[M][M][M];
int read(){
char c; int x = 0, f = 1;
c = getchar();
while(c > '9' || c < '0'){ if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b){
return (a += b) >= Mod ? a - Mod : a;
}
int Dec(int a, int b){
return (a -= b) < 0 ? a + Mod : a;
}
int Mul(int a, int b){
return 1ll * a * b % Mod;
}
int Qpow(int a, int b){
int ans = 1;
while(b){
if(b & 1) ans = Mul(ans, a);
a = Mul(a, a), b >>= 1;
}
return ans;
}
int C(int n, int m){
if(n < m) return 0;
return Mul(fac[n], Mul(inv[m], inv[n - m]));
}
int main(){
tx = read(), ty = read(), Mx = read(), My = read(), R = read(), G = read();
fac[0] = inv[0] = 1;
rep(i, 1, max(tx, ty) + R) fac[i] = Mul(fac[i - 1], i), inv[i] = Qpow(fac[i], Mod - 2);
n = read();
rep(i, 1, n) a[i] = read();
sort(a + 1, a + n + 1);
n = unique(a + 1, a + n + 1) - a - 1;
L2 = min(tx, ty) / G, L1 = min(R, L2);
if(tx == ty && (tx % G == 0)) f[0][tx / G] = 1;
rep(i, 1, R) rep(j, 0, L2){
int S1 = 0, S2 = 0; Tx = tx - j * G, Ty = ty - j * G; if(Tx < 0 || Ty < 0) continue;
rep(k, 0, i){
if(k & 1) S1 = Dec(S1, Mul(C(i, k), C(Tx - (Mx + 1) * k + i - 1, i - 1)));
else S1 = Inc(S1, Mul(C(i, k), C(Tx - (Mx + 1) * k + i - 1, i - 1)));
if(k & 1) S2 = Dec(S2, Mul(C(i, k), C(Ty - (My + 1) * k + i - 1, i - 1)));
else S2 = Inc(S2, Mul(C(i, k), C(Ty - (My + 1) * k + i - 1, i - 1)));
}
f[i][j] = Mul(S1, S2);
}
if(tx == ty && (tx % G == 0)) g[0][tx / G] = 1;
rep(i, 1, R) rep(j, 0, L2){
rep(k, 0, i){
if(k & 1) g[i][j] = Dec(g[i][j], Mul(C(i, k), f[i - k][j]));
else g[i][j] = Inc(g[i][j], Mul(C(i, k), f[i - k][j]));
}
}
dp[0][0][0] = 1;
rep(i, 1, n) rep(j, 0, L1) rep(k, j, L2) rep(l, 0, min(j, k * G / a[i])){
dp[i][j][k] = Inc(dp[i][j][k], Mul(C(R - j + l, l), dp[i - 1][j - l][k - l * (a[i] / G)]));
}
rep(i, 0, L1) rep(j, i, L2) F[i] = Inc(F[i], Mul(dp[n][i][j], g[R - i][j]));
rep(i, 0, L1) ans = ((i & 1) ? Dec(ans, F[i]) : Inc(ans, F[i]));
printf("%d", ans);
return 0;
}
「SDWC2018 Day1」网格的更多相关文章
- LOJ #6374「SDWC2018 Day1」网格
模拟赛考过的题 当时太菜了现在也一样只拿到了$ 30$分 回来填个坑 LOJ #6374 题意 你要从$ (0,0)$走到$ (T_x,T_y)$,每次移动的坐标增量满足$ 0 \leq \Delta ...
- LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...
- LOJ #6060. 「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set
有趣的思博套路题,想到了基本上加上个对线性基的理解就可以过了 首先考虑到这个把数分成两半的分别异或的过程不会改变某一位上\(1\)的总个数 因此我们求出所有数的\(\operatorname{xor} ...
- 【LOJ6060】「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基)
点此看题面 大致题意: 让你把\(n\)个数分成两部分,使得在两部分异或和之和最大的前提下,两个异或和中较小的那个尽量小.输出最优的较小异或和. 线性基 关于线性基,可以看一下这篇博客:线性基入门. ...
- 题解「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set
题目传送门 题目大意 给出一个长度为 \(n\) 的数组,选出一些数异或之和为 \(s1\),其余数异或之和为 \(s2\),求 \(s1+s2\) 最大时 \(s1\) 的最小值. 思路 你发现如果 ...
- 「雅礼集训 2017 Day1」 解题报告
「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...
- [LOJ 6031]「雅礼集训 2017 Day1」字符串
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询 ...
- [LOJ 6030]「雅礼集训 2017 Day1」矩阵
[LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解 ...
- [LOJ 6029]「雅礼集训 2017 Day1」市场
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l ...
随机推荐
- 「算法笔记」快速傅里叶变换(FFT)
一.引入 首先,定义多项式的形式为 \(f(x)=\sum_{i=0}^n a_ix^i\),其中 \(a_i\) 为系数,\(n\) 为次数,这种表示方法称为"系数表示法",一个 ...
- electron使用动态配置文件及持久化存储
1.如何在打包之后,把动态配置文件比如[config.json]放在根目录,不被打包到asar文件中 //解决思路,electron可以拷贝静态资源,比如你把config.json放在项目的根目录下, ...
- [zbar]zbar条码扫描器解析示例
// // Created by leoxae on 2020/3/30. // #include "BarCodeRecogntion.h" string BarCode::Ba ...
- 【】Elasticsearch客户端API使用Demo
Elasticsearch客户端API使用Demo, 转载自官方文档, 以索引雇员文档为示例, 在命令行使用curl演示了一系列的Restful API操作. 1.索引雇员文档 第一个业务需求就是存储 ...
- [学习笔记] IT项目管理 - 挣值管理(EVM)
挣值管理(EVM) 挣值管理(Earned Value Management, EVM)是成本管理里面较为重点的知识点,但是也可以用来综合考察项目范围.进度和成本绩效,经常需要做相关计算. 基本概念P ...
- css 基础 字体和文本样式
字体样式处理font-size:30px:// 设置字体大小 font-weight:700://设置粗体 font-sytle:italic; //设置文字斜体 font-family: 斜体,宋体 ...
- Centos7 mysqldump定时任务,对mysql定时备份数据
vi mysqldump_bak.sh #!/bin/bash PATH=/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:~/ ...
- Shell中 heredoc 内容转义
1.在$符号前面加反斜杠,如: cat > test.sh <<EOF \$test EOF 如果不加,将转成实际的值. 2.给EOF加个双引号,如: cat > test.s ...
- Servlet初级学习加入数据库操作(三)
源代码地址(访问密码:7567):https://url56.ctfile.com/f/34653256-527822631-2e255a CRUD 增删改查 准备添加的操作 点击添加之后,出现新的页 ...
- webpack 多环境打包
目前来说有两种方案: 方案一: 1.修改build文件夹下build.js文件 添加声明变量 2.修改config文件夹下dev.env.js文件 这个是开发环境所用版本 3.修改config文件夹下 ...