题目描述

Walking Race
Time Limit: 10000MS Memory Limit: 131072K
Total Submissions: 4941 Accepted: 1252
Case Time Limit: 3000MS

Description

flymouse’s sister wc is very capable at sports and her favorite event is walking race. Chasing after the championship in an important competition, she comes to a training center to attend a training course. The center has N check-points numbered 1 through N. Some pairs of check-points are directly connected by two-way paths. The check-points and the paths form exactly a tree-like structure. The course lasts N days. On the i-th day, wc picks check-point i as the starting point and chooses another check-point as the finishing point and walks along the only simple path between the two points for the day’s training. Her choice of finishing point will make it that the resulting path will be the longest among those of all possible choices.

After every day’s training, flymouse will do a physical examination from which data will obtained and analyzed to help wc’s future training be better instructed. In order to make the results reliable, flymouse is not using data all from N days for analysis. flymouse’s model for analysis requires data from a series of consecutive days during which the difference between the longest and the shortest distances wc walks cannot exceed a bound M. The longer the series is, the more accurate the results are. flymouse wants to know the number of days in such a longest series. Can you do the job for him?

Input

The input contains a single test case. The test case starts with a line containing the integers N (N ≤ 10^{6}) and M (M < \10^{9}). Then follow N − 1 lines, each containing two integers fi and di (i \= 1, 2, …, N − 1), meaning the check-points i + 1 and fi are connected by a path of length di.

Output

Output one line with only the desired number of days in the longest series.

Sample Input

3 2
1 1
1 3

Sample Output

3

题目大意

题目大概是给一棵n个结点边带权的树,记结点i到其他结点最远距离为d[i],问d数组构成的这个序列中满足其中最大值与最小值的差不超过m的连续子序列最长是多长。

思路

各个结点到其他结点的最远距离可以用树形DP解决,HDU2196

因为有最大值和最小值,需要两个单调队列,一个维护最大值qmax,另一个维护最小值qmin

具体操作看代码

代码

#include<cmath>
#include<deque>
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register int
using namespace std;
inline int read(){
int x=0,w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=(x<<1)+(x<<3)+ch-48,ch=getchar();
return x*w;
}
const int MAXN=1e6+200;
struct edge {
int to,next,w;
} edges[MAXN*2];
int tot,dis[MAXN];
int head[MAXN];
void add_edge(int u,int v,int w) {
edges[tot].to=v;
edges[tot].w=w;
edges[tot].next = head[u];
head[u] = tot++;
}
int dist[MAXN][3]; //dist[i][0,1,2]分别为正向最大距离,正向次大距离,反向最大距离
int longest[MAXN];
int dfs1(int u,int fa) {
if(dist[u][0]>=0) return dist[u][0];
dist[u][0]=dist[u][1]=dist[u][2]=longest[u]=0;
for(re i=head[u];i!=-1;i=edges[i].next) {
int v=edges[i].to;
if(v==fa) continue;
if(dist[u][0]<dfs1(v,u)+edges[i].w) {
longest[u]=v;
dist[u][1]=max(dist[u][1],dist[u][0]);
dist[u][0]=dfs1(v,u)+edges[i].w;
}
else if(dist[u][1]<dfs1(v,u)+edges[i].w)
dist[u][1]=max(dist[u][1],dfs1(v,u)+edges[i].w);
}
return dist[u][0];
} void dfs2(int u,int fa) {
for(int i=head[u];i!=-1;i=edges[i].next) {
int v = edges[i].to;
if(v==fa)continue;
if(v==longest[u]) dist[v][2]=max(dist[u][2],dist[u][1])+edges[i].w;
else dist[v][2]=max(dist[u][2],dist[u][0])+edges[i].w;
dfs2(v,u);
}
} int finish(int n,int M){
if(n <= 0) return n;
if(M < 0) return 0;
deque<int> qmax,qmin; //qmax单调递减 qmin单调递增
deque<int> idmax,idmin; //id存节点编号(同样单调)
int ans=0;
int left=1,right=1;
while(right <= n){
//维护单调性
while(!qmax.empty() && dis[right] >= qmax.back()) qmax.pop_back(), idmax.pop_back();
qmax.push_back(dis[right]); idmax.push_back(right);
while(!qmin.empty() && dis[right] <= qmin.back()) qmin.pop_back(), idmin.pop_back();
qmin.push_back(dis[right]); idmin.push_back(right);
while(qmax.front()-qmin.front() > M && left<right){ //超出m就减少最大值/增大最小值(左指针右移)
left++;
while(idmax.front() < left) idmax.pop_front(), qmax.pop_front();
while(idmin.front() < left) idmin.pop_front(), qmin.pop_front();
}
ans = max(ans,right-left+1);
right++;
}
return ans;
}
int main() {
int n,m;
while(scanf("%d%d",&n,&m)==2&&n) {
tot=0;
memset(dist,-1,sizeof(dist));
memset(head,-1,sizeof(head));
memset(longest,-1,sizeof(longest));
for(int i=2; i<=n; i++) {
int v,w;
scanf("%d%d",&v,&w);
add_edge(i,v,w);
add_edge(v,i,w);
}
dfs1(1,-1);
dfs2(1,-1);
for(int i=1;i<=n;i++) dis[i]=max(dist[i][0],dist[i][2]);
printf("%d\n",finish(n,m));
}
return 0;
}

【题解】poj 3162 Walking Race 树形dp的更多相关文章

  1. POJ 3162.Walking Race 树形dp 树的直径

    Walking Race Time Limit: 10000MS   Memory Limit: 131072K Total Submissions: 4123   Accepted: 1029 Ca ...

  2. POJ - 3162 Walking Race 树形dp 单调队列

    POJ - 3162Walking Race 题目大意:有n个训练点,第i天就选择第i个训练点为起点跑到最远距离的点,然后连续的几天里如果最远距离的最大值和最小值的差距不超过m就可以作为观测区间,问这 ...

  3. POJ 3162 Walking Race 树形DP+线段树

    给出一棵树,编号为1~n,给出数m 漂亮mm连续n天锻炼身体,每天会以节点i为起点,走到离i最远距离的节点 走了n天之后,mm想到知道自己这n天的锻炼效果 于是mm把这n天每一天走的距离记录在一起,成 ...

  4. POJ 3162 Walking Race 树形dp 优先队列

    http://poj.org/problem?id=3162 题意 :  一棵n个节点的树.wc爱跑步,跑n天,第i天从第i个节点开始跑步,每次跑到距第i个节点最远的那个节点(产生了n个距离),现在要 ...

  5. POJ 3162 Walking Race(树形dp+单调队列 or 线段树)

    http://poj.org/problem?id=3162 题意:一棵n个节点的树.有一个屌丝爱跑步,跑n天,第i天从第i个节点开始跑步,每次跑到距第i个节点最远的那个节点(产生了n个距离),现在要 ...

  6. 【POJ3162】Walking Race 树形dp+单调队列+双指针

    题目大意:给定一棵 N 个节点的无根树,边有边权,现生成一个序列 d,d[i] 表示 i 号节点到树上其他节点距离的最大值.给定一个 m,求 d 序列中最大值和最小值之差不超过 m 的最长连续段的长度 ...

  7. POJ 3162 Walking Race(树的直径+单调队列)

    题目大意:对一棵树,求出从每个结点出发能到走的最长距离(每个结点最多只能经过一次),将这些距离按排成一个数组得到dis[1],dis[2],dis[3]……dis[n] ,在数列的dis中求一个最长的 ...

  8. POJ 3162 Walking Race (树的直径,单调队列)

    题意:给定一棵带边权的n个节点的树,首先要求出每个点的最长路,然后写成序列d[1],d[2]...d[n],然后求满足 区间最大值-区间最小值<=k 的最大区间长度为多少? 思路: 分两步进行: ...

  9. poj 2324 Anniversary party(树形DP)

    /*poj 2324 Anniversary party(树形DP) ---用dp[i][1]表示以i为根的子树节点i要去的最大欢乐值,用dp[i][0]表示以i为根节点的子树i不去时的最大欢乐值, ...

随机推荐

  1. js实现倒计时函数

    function updateEndTime() { //当前时间,距1970年1月1日的秒数 var date = new Date(); var time = (date.getTime())/1 ...

  2. idea 2018.3.3版本激活到

        新装的,还是试用版本,下面就是进行激活操作: 先下载 链接: https://pan.baidu.com/s/1o44bsO7tx3WGuO5GgT0ytw 提取码: gbmw 第一步:将bi ...

  3. 关于MySQL参数,这些你要知道

    前言: 在前面一些文章中,经常能看到介绍某某参数的作用,可能有些小伙伴仍搞不清楚 MySQL 参数是啥.本篇文章我们来聊聊 MySQL 参数,学习下如何管理维护 MySQL 参数. 1.MySQL参数 ...

  4. UVA OJ 623 500!

    500!  In these days you can more and more often happen to see programs which perform some useful cal ...

  5. 大量客户名片如何轻松导入到CRM系统里?

    当您组织或参与了一次线下活动或展会,肯定会收集到非常多的潜在客户的名片.这个时候您是不是在发愁如何将这些信息导入到CRM系统中? 可以想到,您肯定会将这些名片分发给销售人员,让他们手动录入--这也确实 ...

  6. 大数据开发-Flink-1.13新特性

    介绍 大概4月,Flink1.13就发布了,参加 了Flink1.13 的Meetup,收获还是挺多,从大的方面讲就是FlingSql的改进和优化,资源调度管理方面的优化,以及流批一体Flink在运行 ...

  7. C++PRIMER第五版练习题答案第一章

    C++PRIMER第五版练习题答案第一章 应该有很多小伙伴和我一样,闲来无事买了本C++的书自己啃,课后的练习题做的很揪心,这里我分享下我写的答案,希望能帮助到你,提供源码,就不跑了哈,毕竟现在是第一 ...

  8. [bug] SSM项目:Cannot load driver class: com.mysql.jdbc.Driver

    检查pom文件,mysql包部分为: <dependency> <groupId>mysql</groupId> <artifactId>mysql-c ...

  9. Ubuntu 15.04下安装Docker

    最近听说Docker很火,不知道什么东西,只知道是一个容器,可以跨平台.闲来无事,我也来倒弄倒弄.本文主要介绍:Ubuntu下的安装,以及基本的入门命令介绍:我的机器是Ubuntu 15.04 64位 ...

  10. 搭建 Linux 集群环境

    什么是集群 集群是一组通过网络互联的计算机,集群里的每一台计算机称作一个节点. 搭建集群环境规划 集群主机节点数:4 台安装 CentOS7 的虚拟机 主机名(Hostname) IP 地址 node ...