题目传送门

题目大意

给出一个\(n\)个点的树,每个点有点权,定义一条链的贡献为该链的点数乘上链上的权值和,求出树上所有链中的权值最大值。

\(n\le 5\times 10^4\)

思路

算是我入边分治的门的一道题吧。。。借鉴了\(\texttt{Miracle}\)巨佬的图、代码以及思路(那不就是转载么???(大雾

边分治的大概意思就是说,对于给出的一棵树,我们重新构造成一颗3度树,并且保证我们要求答案的所需性质并不会丢失。然后有一个性质:

于是我们找到重心边分治一下,递归次数就是\(\log n\)级别。于是就能在一个较优的时间复杂度内解决这个问题。

那我们如何对于原树建出一个保留所需信息的3度树呢?有两种方法,第一种就是这样:

第二种就是建两个虚儿子,然后按奇偶接儿子。

回到这道题,我们显然可以用第一种方法建树,这并不影响答案。我们发现我们边分治似乎对点的问题不是很好解决,但是两个点之间的点的个数等于边的个数+\(1\),于是我们就可以通过维护边数得到点数。

然后注意虚边的边权为\(0\)就好了,似乎也没有好讲的(手动划掉)。这里讲一个小细节,将两棵子树答案合并的时候可以满足必须要经过这条边,因为不经过的话可以在子树里面找到。不过实现起来的话,强制经过似乎比较好码。(雾

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define ll long long
#define MAXN 100005 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int n,las[MAXN];
ll ans,val[MAXN]; namespace Graph{
#define fi first
#define se second
#define MP make_pair
#define PII pair<ll,ll>
int t,ta,tb,top = 1,to[MAXN << 1],wei[MAXN << 1],nxt[MAXN << 1],head[MAXN];
void Add_Edge (int u,int v,int w){to[++ top] = v,wei[top] = w,nxt[top] = head[u],head[u] = top;}
void AddEdge (int u,int v,int w){Add_Edge (u,v,w),Add_Edge (v,u,w);}
bool vis[MAXN << 1];
int siz[MAXN],lim,ed,Siz;//ed表示当前重心边
void dfs (int u,int fa){
siz[u] = 1;
for (Int i = head[u],v;i;i = nxt[i]){
if (vis[i] || (v = to[i]) == fa) continue;
dfs (v,u),siz[u] += siz[v];
int tmp = max (siz[v],Siz - siz[v]);
if (tmp < lim) lim = tmp,ed = i;
}
}
PII A[MAXN],B[MAXN],*f;
void dfs (int u,int fa,ll minn,ll dis){
minn = min (minn,val[u]),f[++ t] = MP (minn,dis);
for (Int i = head[u],v;i;i = nxt[i]){
if (vis[i] || (v = to[i]) == fa) continue;
dfs (v,u,minn,dis + wei[i]);
}
}
void Solve (int u,int S){//S表示当前子树大小
if (S <= 1) return ;
lim = Siz = S,dfs (u,0),vis[ed] = vis[ed ^ 1] = 1;
t = 0,f = A,dfs (to[ed],0,1e9,0),ta = t;
t = 0,f = B,dfs (to[ed ^ 1],0,1e9,0),tb = t;
sort (A + 1,A + ta + 1),sort (B + 1,B + tb + 1);
int j = tb;ll mx = 0,l = wei[ed];
for (Int i = ta;i;-- i){
while (j > 1 && B[j].fi >= A[i].fi) mx = max (mx,B[j --].se);
if (j < tb) ans = max (ans,(A[i].se + mx + 1 + l) * A[i].fi);
}
j = ta,mx = 0;
for (Int i = tb;i;-- i){
while (j > 1 && A[j].fi >= B[i].fi) mx = max (mx,A[j --].se);
if (j < ta) ans = max (ans,(B[i].se + mx + 1 + l) * B[i].fi);
}
int tx = to[ed],ty = to[ed ^ 1];
Solve (tx,siz[tx]),Solve (ty,S - siz[tx]);
}
} int top = 1,cnt,to[MAXN << 1],nxt[MAXN << 1],head[MAXN];
void Add_Edge (int u,int v){to[++ top] = v,nxt[top] = head[u],head[u] = top;} void dfs (int u,int fa){
for (Int i = head[u],v;i;i = nxt[i]){
if ((v = to[i]) == fa) continue;dfs (v,u);
if (!las[u]) Graph::AddEdge (u,v,1),las[u] = u;
else ++ cnt,Graph::AddEdge (las[u],cnt,0),Graph::AddEdge (las[u] = cnt,v,1),val[cnt] = val[u];
}
} signed main(){
read (n),cnt = n;
for (Int i = 1;i <= n;++ i) read (val[i]);
for (Int i = 2,u,v;i <= n;++ i) read (u,v),Add_Edge (u,v),Add_Edge (v,u);
dfs (1,0),Graph::Solve (1,cnt);
write (ans),putchar ('\n');
return 0;
}

题解 最长道路tree的更多相关文章

  1. 【BZOJ2870】最长道路tree 点分治+树状数组

    [BZOJ2870]最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来 ...

  2. BZOJ2870—最长道路tree

    最长道路tree Description H城很大,有N个路口(从1到N编号),路口之间有N-1边,使得任意两个路口都能互相到达,这些道路的长度我们视作一样.每个路口都有很多车辆来往,所以每个路口i都 ...

  3. BZOJ2870: 最长道路tree

    题解: 子树分治的做法可以戳这里:http://blog.csdn.net/iamzky/article/details/41120733 可是码量... 这里介绍另一种好写又快的方法. 我们还是一颗 ...

  4. 【bzoj2870】最长道路tree 树的直径+并查集

    题目描述 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数. 输入 第一行N 第二行N个数分别表示1~N的点权v[i] 接下来N-1行每 ...

  5. bzoj2870最长道路tree——边分治

    简化版描述: 给定一棵N个点的树,求树上一条链使得链的长度乘链上所有点中的最小权值所得的积最大. 其中链长度定义为链上点的个数.   有几个不同的做法: 1.sort+并查集+树的直径.边从大到小加入 ...

  6. BZOJ2870 最长道路tree(并查集+LCA)

    题意 (n<=50000) 题解 #include<iostream> #include<cstring> #include<cstdio> #include ...

  7. BZOJ 2870: 最长道路tree 树的直径+并查集

    挺好的一道题. 把所有点都离线下来,一个个往里加入就行了. #include <cstdio> #include <algorithm> #define N 100003 #d ...

  8. 2870: 最长道路tree

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2870 思路 先把树转化为二叉树 再链分治 %%yyb 代码 #include <ios ...

  9. bzoj 2870 最长道路tree——边分治

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2870 关于边分治:https://www.cnblogs.com/Khada-Jhin/p/ ...

随机推荐

  1. 地图控件:overview、scale、toolbar

    地图常用控件: 1.AMap.MapType:地图类型切换插件,用来切换固定的几个常用图层 2.AMap.OverView:地图鹰眼插件,默认在地图右下角显示缩略图 3.AMap.Scale:地图比例 ...

  2. 理解Java中对象基础Object类

    一.Object简述 源码注释:Object类是所有类层级关系的Root节点,作为所有类的超类,包括数组也实现了该类的方法,注意这里说的很明确,指类层面. 所以在Java中有一句常说的话,一切皆对象, ...

  3. HTTP系列之:HTTP中的cookies

    目录 简介 cookies的作用 创建cookies cookies的生存时间 cookies的权限控制 第三方cookies 总结 简介 如果小伙伴最近有访问国外的一些标准网站的话,可能经常会弹出一 ...

  4. oracle基础知识及语法

    ORACLE支持五种类型的完整性约束 NOT NULL (非空)--防止NULL值进入指定的列,在单列基础上定义,默认情况下,ORACLE允许在任何列中有NULL值. CHECK (检查)--检查在约 ...

  5. 面试官:Redis的事务满足原子性吗?

    原创:码农参上(微信公众号ID:CODER_SANJYOU),欢迎分享,转载请保留出处. 谈起数据库的事务来,估计很多同学的第一反应都是ACID,而排在ACID中首位的A原子性,要求一个事务中的所有操 ...

  6. SpringSecurity-图解

  7. CentOS 7操作系统安装

    1.关于运维小伙伴可以采用何种方式安装操作系统 下面列举的只是我会用到的安装方式,在运维过程中并不一定是最优解,只是自己运维过程中的一些经验. (1)物理服务器,可以通过连接管理口来安装操作系统,管理 ...

  8. JNDI注入基础

    JNDI注入基础 一.简介 JNDI(The Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API,命名服务 ...

  9. FastAPI(6)- get 请求 - 详解 Query

    可选参数 上一篇文章讲过查询参数可以不是必传的,可以是可选参数 from fastapi import FastAPI from typing import Optional import uvico ...

  10. mysql数据库备份参数

    我用来实现自动全备份的脚本(可以满足一般有前后版本兼容要求的导出导入操作,我的字符集是latin1): mysqldump.exe -umyusername -pmypass -h localhost ...