CF123E Maze(期望dp,树形dp,式子)
题目大意:
给你一棵树,边权都是1,每一个点有一个是起点的概率和一个是终点的概率,你将以起点为根,开始在树上随机dfs,每到一个点,就会将他的所有儿子随机打乱成序列,然后按照那个随机顺序走完,直到走到终点。求dfs从起点到终点的期望长度。
其实一开始看到这个题,还是有点懵逼的啊
根据期望的线性性,我们可以通过求所有相邻点的期望,然后直接相加,得到ans
那我们可以这么考虑,对于一个点来说,假设我们要求的是从\(x->y\)(\(y\)是\(x\)的儿子)的期望的话,如果走到一个错的儿子,那么就需要\(2*size[son]\)步重新回来(相当于每条边会走两遍),而每个儿子在对应的\(y\)之前的概率又都是\(\frac{1}{2}\)(所有排列中,要不是y在前,就是那一个在前)
所以可以得知,每一个点的贡献 就是\(size[x]\)
那么我们可以通过枚举终点,然后算其他子树的\(size[x]\)以及概率和,求出来他们的贡献
最后直接输出ans就好
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk makr_pair
#define ll long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 2e5+1e2;
const int maxm = 2*maxn;
int point[maxn],nxt[maxm],to[maxm];
double val[maxn];
int size[maxn];
double st[maxn],ed[maxn];
int n,m;
double sumst,sumed;
int cnt;
double ans;
void addedge(int x,int y)
{
nxt[++cnt]=point[x];
to[cnt]=y;
point[x]=cnt;
}
void dfs(int x,int fa)
{
size[x]=1;
val[x]=st[x];
//cout<<x<<" "<<val[x]<<endl;
for (int i=point[x];i;i=nxt[i])
{
int p = to[i];
if (p==fa) continue;
dfs(p,x);
size[x]+=size[p];
val[x]+=val[p];
}
}
int main()
{
n=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read();
addedge(x,y);
addedge(y,x);
}
for (int i=1;i<=n;i++)
{
scanf("%lf%lf",&st[i],&ed[i]);
sumst+=st[i];
sumed+=ed[i];
}
for(int i=1;i<=n;i++)
{
st[i]=st[i]/sumst;
ed[i]=ed[i]/sumed;
// printf("%.4lf %.4lf\n",st[i],ed[i]);
}
dfs(1,0);
//cout<<val[1]<<endl;
for (int x=1;x<=n;x++)
{
for (int i=point[x];i;i=nxt[i])
{
int p =to[i];
if (size[p]>=size[x])
ans=ans+1.0*(1.0-val[x])*1.0*(1.0*n-size[x])*ed[x];
else
ans=ans+val[p]*1.0*size[p]*ed[x];
// cout<<x<<" "<<p<<" "<<ans<<endl;
}
}
printf("%.12lf",ans);
return 0;
}
CF123E Maze(期望dp,树形dp,式子)的更多相关文章
- 选课 ( dp 树形dp 动态规划 树规)
和某篇随笔重了?!!?!?!?!?!?不管了留着吧 题目: 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之 ...
- HDU4035 Maze 期望DP+树形DP(好题)
题意:有一个树形的迷宫,有N个房间(标号为1~N)以及N-1条通道将它们连通,一开始在1号房间,每进入一个房间i,有k[i]的概率被陷阱杀死回到房间1,有s[i]的概率找到出口逃离迷宫,如果没有找到出 ...
- luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp
LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...
- HDU 4035 Maze 概率dp,树形dp 难度:2
http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...
- ZROJ#398. 【18提高7】随机游走(期望dp 树形dp)
题意 [题目链接]版权原因就不发了.. 给出一棵树,求出任意两点之间期望距离的最大值 Sol 比较清真的一道题吧.. 设\(f[x]\)表示从\(x\)走到\(x\)的父亲的期望步数 \(g[x]\) ...
- BZOJ.3566.[SHOI2014]概率充电器(概率DP 树形DP)
BZOJ 洛谷 这里写的不错,虽然基本还是自己看转移... 每个点的贡献都是\(1\),所以直接求每个点通电的概率\(F_i\),答案就是\(\sum F_i\). 把\(F_x\)分成:父节点通电给 ...
- BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP
题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...
- 加分二叉树 vijos1991 NOIP2003第三题 区间DP/树形DP/记忆化搜索
描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,-,n),其中数字1,2,3,-,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一 ...
- 树形DP和状压DP和背包DP
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...
- 树形DP 复习
树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...
随机推荐
- 自己封装一个Object.freeze()方法
1.遍历所有属性和方法 2.修改遍历到的属性的描述 3.Object.seal() Object.defineProperty(Object,'freezePolyfill',{ value:func ...
- ArcEngine+C# 森林资源仿真系统 核心代码
目录 第一章 基础功能的核心代码 实现滚轮缩放事件 创建或获取地理数据(导入前询问用户是否覆盖) 创建要素类(Shape) 点列数据创建要素类 Shape文件创建要素类 GDB中取出要素类 创建栅格数 ...
- Django——Ajax发送请求验证用户名是否被注册
场景: 用户注册的时候,输入用户名之后,Ajax发送请求到后端,后端验证该用户名是否已经被注册,然后返回到注册页面提示用户. 1.模型: from django.db import models cl ...
- docker快速创建轻量级的可移植的容器(一)
系列其他内容 docker快速创建轻量级的可移植的容器✓ docker&flask快速构建服务接口 docker&uwsgi高性能WSGI服务器生产部署必备 docker&gu ...
- jQuery判断多种数据类型
1.判断是否为数组类型 var obj=[0]; alert((typeof obj=='object')&&obj.constructor==Array) 2. 判断是否为字符串 ...
- XXE从0到1
XXE从0到1 1. XXE概述 XXE(XML External Entity Injection)即XML外部实体注入.漏洞是在对不安全的外部实体数据进行处理时引发的安全问题. 下面我们主要介绍P ...
- 加入Erlang社区-指引
国内暂且没有发现较活跃.人气较高的论坛或者社区,偶然发现Erlang官网的Community页面描述了一个Slack交流平台,里面有众多异国他乡的大佬,感兴趣的.有技术疑问的都可以加入看看. 加入教程 ...
- mac下使用vscode技巧
1.查找 command + F 2.查找并替换 选中要替换的文字 再 command + options + F 3.竖状区域部分替换 鼠标点中替换字段的开头或者结尾,按options + s ...
- 双非Java的学习之旅以及秋招路程
个人信息: 趁着中秋写个帖子记录一下吧.渣渣本,无实习,无高质量证书,走了很多弯路,最后选择的Java后端.现在算是半躺平了,接了几个中小厂的offer保底,20w多的薪资,后面还有几家公司接着面.不 ...
- 机器学习——softmax回归
softmax回归 前面介绍了线性回归模型适用于输出为连续值的情景.在另一类情景中,模型输出可以是一个像图像类别这样的离散值.对于这样的离散值预测问题,我们可以使用诸如 softmax 回归在内的分类 ...