Resnet网络详细结构(针对Cifar10)

结构

具体结构(Pytorch)

  1. conv1

    (conv1): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    • Conv2d

      • Conv2d(in_channels, out_channels, kernel_size, stride=1,padding=0, dilation=1, groups=1,bias=True, padding_mode=‘zeros’)
        (输入通道,输出通道数,F:卷积核的大小,S:步长,P:padding,dilation:卷积核的间隔,空洞卷积)
      • 卷积核维度计算公式:

      \[W_o = (W_i-F+2P)/S+1
      \]
    • BatchNorm2d:批归一化(Batch Normalization)的目的是使我们的一批(Batch)的feature map满足均值为0,方差为1的分布规律

      • BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True,track_running_stats=True)
    • ReLU:激活函数

    • MaxPool2d:最大池化,下采样

  2. layer1

    (layer1): Sequential(
    (0): BasicBlock(
    (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
    (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (relu): ReLU(inplace=True)
    (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))
  3. layer3:……

  4. layer4:……

  5. avgpool

    • AdaptiveAvgPool2d :自适应平均池化

      • torch.nn.AdaptiveAvgPool1d(output_size)
      • 对输入进行自适应平均池化,输出指定为output_size,特征维数不变,根据输出大小计算核池化的核大小,步长

  6. fc:全连接

(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=512, out_features=10, bias=True)

Resnet网络详细结构(针对Cifar10)的更多相关文章

  1. resnet模型详细结构

    resnet有5个stage,每个stage缩小一倍(即stride2).第1个stage是7*7个卷积大的缩小1倍,第2个stage是通过max-pooling缩小1倍,后面3个stage都是在各自 ...

  2. 学习笔记-ResNet网络

    ResNet网络 ResNet原理和实现 总结 一.ResNet原理和实现 神经网络第一次出现在1998年,当时用5层的全连接网络LetNet实现了手写数字识别,现在这个模型已经是神经网络界的“hel ...

  3. 0609-搭建ResNet网络

    0609-搭建ResNet网络 目录 一.ResNet 网络概述 二.利用 torch 实现 ResNet34 网络 三.torchvision 中的 resnet34网络调用 四.第六章总结 pyt ...

  4. ResNet网络的训练和预测

    ResNet网络的训练和预测 简介 Introduction 图像分类与CNN 图像分类 是指将图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法,是计算机视觉中其他任务,比如目标检测 ...

  5. ResNet网络再剖析

    随着2018年秋季的到来,提前批和内推大军已经开始了,自己也成功得当了几次炮灰,不过在总结的过程中,越是了解到自己的不足,还是需要加油. 最近重新复习了resnet网络,又能发现一些新的理念,感觉很f ...

  6. 网络存储结构简明分析—DAS、NAS和SAN 三者区别

    存储的总体分类     主流存储结构   网络存储结构大致分为三种:直连式存储(DAS:Direct Attached Storage).存储区域网络(SAN:Storage Area Network ...

  7. 深度学习之ResNet网络

    介绍 Resnet分类网络是当前应用最为广泛的CNN特征提取网络. 我们的一般印象当中,深度学习愈是深(复杂,参数多)愈是有着更强的表达能力.凭着这一基本准则CNN分类网络自Alexnet的7层发展到 ...

  8. WGCNA构建基因共表达网络详细教程

    这篇文章更多的是对于混乱的中文资源的梳理,并补充了一些没有提到的重要参数,希望大家不会踩坑. 1. 简介 1.1 背景 WGCNA(weighted gene co-expression networ ...

  9. PyTorch对ResNet网络的实现解析

    PyTorch对ResNet网络的实现解析 1.首先导入需要使用的包 import torch.nn as nn import torch.utils.model_zoo as model_zoo # ...

随机推荐

  1. lsnrctl start 报错

    lsnrctl start报错: TNS-12541:TNS:no listener TNS-12560:TNS:protocol adapter error TNS-00511:No listene ...

  2. canvas小画板——(3)笔锋效果

    画线准备 准备一个canvas <canvas id="canvasId" width="1000" height="800"> ...

  3. 学习Qt Charts - Qt Charts的坐标轴

    这次来学学Qt chart 的坐标轴 有这么一组数据: 这是深圳市2019年6月份的天气预报(来自中国天气网:深圳),里面有每天的最高温度,把这最高温度做成个数组,如下: int daily_temp ...

  4. 数据权限筛选(RLS)的两种实现介绍

    在应用程序中,尤其是在统计的时候, 需要使用数据权限来筛选数据行. 简单的说,张三看张三部门的数据, 李四看李四部门的数据:或者员工只能看自己的数据, 经理可以看部门的数据.这个在微软的文档中叫Row ...

  5. Kali下切换JDK版本

    Kali下自由更换JDK版本 今天在学习了一下CobaltStrike之后,打算在Kali上本地搭建一个服务器端, 查看了一下Kali的JDK配置发现版本是13.X的,然而CobaltStrike最好 ...

  6. 15、linux文件、目录的权限及如何改变权限(root用户不受任何权限的限制)

    15.1.linux普通文件的读.写.执行权限说明: r:读,表示具有读取\阅读文件内容的权限: w:可写,表示具有新增,修改文件内容的权限: 如果没有r配合,那么vi编辑文件会提示无法编辑(但可以强 ...

  7. 柔性数组(Redis源码学习)

    柔性数组(Redis源码学习) 1. 问题背景 在阅读Redis源码中的字符串有如下结构,在sizeof(struct sdshdr)得到结果为8,在后续内存申请和计算中也用到.其实在工作中有遇到过这 ...

  8. Collections中的实用方法

    总结一下java.util.Collections类内部的静态方法. checkedCollection(Collection<T> , Class<T> type) chec ...

  9. Docker:部署PXC8.0集群时,启动容器报错New joining cluster node didn‘t find all needed SSL artifacts

    使用docker部署mysql PXC集群8.0版本,启动第二个节点的时候遇到报错,New joining cluster node didn't find all needed SSL artifa ...

  10. Message /index.jsp (line: [17], column: [45]) The JSP specification requires that an attribute name is preceded by whitespace

    Error: Message /index.jsp (line: [17], column: [45]) The JSP specification requires that an attribut ...