概念

Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Stream 的操作符大体上分为两种:中间操作符终止操作符

中间操作符

对于数据流来说,中间操作符在执行制定处理程序后,数据流依然可以传递给下一级的操作符。

中间操作符包含8种(排除了parallel,sequential,这两个操作并不涉及到对数据流的加工操作):

  1. map(mapToInt,mapToLong,mapToDouble) 转换操作符,把比如A->B,这里默认提供了转int,long,double的操作符。
  2. flatmap(flatmapToInt,flatmapToLong,flatmapToDouble) 拍平操作比如把 int[]{2,3,4} 拍平 变成 2,3,4 也就是从原来的一个数据变成了3个数据,这里默认提供了拍平成int,long,double的操作符。
  3. limit 限流操作,比如数据流中有10个 我只要出前3个就可以使用。
  4. distint 去重操作,对重复元素去重,底层使用了equals方法。
  5. filter 过滤操作,把不想要的数据过滤。
  6. peek 挑出操作,如果想对数据进行某些操作,如:读取、编辑修改等。
  7. skip 跳过操作,跳过某些元素。
  8. sorted(unordered) 排序操作,对元素排序,前提是实现Comparable接口,当然也可以自定义比较器。

终止操作符

数据经过中间加工操作,就轮到终止操作符上场了;

终止操作符就是用来对数据进行收集或者消费的,数据到了终止操作这里就不会向下流动了,终止操作符只能使用一次。

  1. collect 收集操作,将所有数据收集起来,这个操作非常重要,官方的提供的Collectors 提供了非常多收集器,可以说Stream 的核心在于Collectors。
  2. count 统计操作,统计最终的数据个数。
  3. findFirst、findAny 查找操作,查找第一个、查找任何一个 返回的类型为Optional。
  4. noneMatch、allMatch、anyMatch 匹配操作,数据流中是否存在符合条件的元素 返回值为bool 值。
  5. min、max 最值操作,需要自定义比较器,返回数据流中最大最小的值。
  6. reduce 规约操作,将整个数据流的值规约为一个值,count、min、max底层就是使用reduce。
  7. forEach、forEachOrdered 遍历操作,这里就是对最终的数据进行消费了。
  8. toArray 数组操作,将数据流的元素转换成数组。

Stream的创建

1、通过 java.util.Collection.stream() 方法用集合创建流

List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();

2、使用java.util.Arrays.stream(T[] array)方法用数组创建流

int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);

3、使用Stream的静态方法:of()、iterate()、generate()

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);

Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println); // 0 3 6 9 Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

输出结果:

3
6
9
0.8106623442686114
0.11554643727388458
0.1404645961428974 Process finished with exit code 0

streamparallelStream的简单区分:

stream是顺序流,由主线程按顺序对流执行操作;

parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。

例如筛选集合中的奇数,两者的处理不同之处:

Stream使用

遍历/匹配(foreach/find/match)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。

public class StreamTest {

    public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);
// 遍历输出符合条件的元素
list.stream().filter(x -> x > 6).forEach(System.out::println);
// 匹配第一个
Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
// 匹配任意(适用于并行流)
Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
// 是否包含符合特定条件的元素
boolean anyMatch = list.stream().anyMatch(x -> x < 6);
System.out.println("匹配第一个值:" + findFirst.get());
System.out.println("匹配任意一个值:" + findAny.get());
System.out.println("是否存在大于6的值:" + anyMatch); }
}

输出结果:

7
9
8
匹配第一个值:7
匹配任意一个值:8
是否存在大于6的值:true Process finished with exit code 0

筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。

筛选出Integer集合中大于7的元素,并打印出来

public class StreamTest {

    public static void main(String[] args) {
List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
Stream<Integer> stream = list.stream();
stream.filter(x -> x > 7).forEach(System.out::println);
}
}

输出结果:

8
9 Process finished with exit code 0

聚合(max/min/count)

maxmincount这些字眼你一定不陌生,没错,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。

案例一:获取String集合中最长的元素。

public class StreamTest {

    public static void main(String[] args) {
List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");
Optional<String> max = list.stream().max(Comparator.comparing(String::length));
System.out.println("最长的字符串:" + max.get());
}
}

输出结果:

最长的字符串:weoujgsd

Process finished with exit code 0

案例二:获取Integer集合中的最大值。

public class StreamTest {

    public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);
// 自然排序
Optional<Integer> max = list.stream().max(Integer::compareTo);
// 自定义排序
Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o1.compareTo(o2);
}
});
System.out.println("自然排序的最大值:" + max.get());
System.out.println("自定义排序的最大值:" + max2.get());
}
}

输出结果:

自然排序的最大值:11
自定义排序的最大值:11 Process finished with exit code 0

案例三:计算Integer集合中大于6的元素的个数。

public class StreamTest {

    public static void main(String[] args) {
List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);
long count = list.stream().filter(x -> x > 6).count();
System.out.println("list中大于6的元素个数:" + count);
}
}

输出结果:

list中大于6的元素个数:4

Process finished with exit code 0

映射(map/flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为mapflatMap

  • map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
  • flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。

public class StreamTest {

    public static void main(String[] args) {
String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());
System.out.println("每个元素大写:" + strList);
List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());
System.out.println("每个元素+3:" + intListNew);
}
}

输出结果:

每个元素大写:[ABCD, BCDD, DEFDE, FTR]
每个元素+3:[4, 6, 8, 10, 12, 14] Process finished with exit code 0

案例二:将两个字符数组合并成一个新的字符数组。

public class StreamTest {

    public static void main(String[] args) {
List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
List<String> listNew = list.stream().flatMap(s -> {
// 将每个元素转换成一个stream
String[] split = s.split(",");
Stream<String> s2 = Arrays.stream(split);
return s2;
}).collect(Collectors.toList());
System.out.println("处理前的集合:" + list);
System.out.println("处理后的集合:" + listNew);
}
}

输出结果:

处理前的集合:[m,k,l,a, 1,3,5,7]
处理后的集合:[m, k, l, a, 1, 3, 5, 7] Process finished with exit code 0

归约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

案例一:求Integer集合的元素之和、乘积和最大值。

public class StreamTest {

    public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
// 求和方式1
Optional<Integer> sum = list.stream().reduce(Integer::sum);
// 求和方式2
Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
// 求和方式3
Integer sum3 = list.stream().reduce(0, Integer::sum);
// 求乘积
Optional<Integer> product = list.stream().reduce((x, y) -> x * y);
// 求最大值方式1
Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
// 求最大值写法2
Integer max2 = list.stream().reduce(1, Integer::max);
System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
System.out.println("list求积:" + product.get());
System.out.println("list求和:" + max.get() + "," + max2);
}
}

输出结果:

list求和:29,29,29
list求积:2112
list求和:11,11 Process finished with exit code 0

归集(toList/toSet/toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toListtoSettoMap比较常用,另外还有toCollectiontoConcurrentMap等复杂一些的用法。

下面用一个案例演示toListtoSettoMap

public class Person {

    private String name;  // 姓名
private int salary; // 薪资
private int age; // 年龄
private String sex; //性别
private String area; // 地区 // 构造方法
public Person(String name, int salary, int age,String sex,String area) {
this.name = name;
this.salary = salary;
this.age = age;
this.sex = sex;
this.area = area;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public int getSalary() {
return salary;
} public void setSalary(int salary) {
this.salary = salary;
} public int getAge() {
return age;
} public void setAge(int age) {
this.age = age;
} public String getSex() {
return sex;
} public void setSex(String sex) {
this.sex = sex;
} public String getArea() {
return area;
} public void setArea(String area) {
this.area = area;
} @Override
public String toString() {
return "Person{" +
"name='" + name + '\'' +
", salary=" + salary +
", age=" + age +
", sex='" + sex + '\'' +
", area='" + area + '\'' +
'}';
}
}
public class StreamTest {

    public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
.collect(Collectors.toMap(Person::getName, p -> p));
System.out.println("toList:" + listNew);
System.out.println("toSet:" + set);
System.out.println("toMap:" + map);
}
}

输出结果:

toList:[6, 4, 6, 6, 20]
toSet:[4, 20, 6]
toMap:{Tom=Person{name='Tom', salary=8900, age=23, sex='male', area='New York'}, Anni=Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}} Process finished with exit code 0

统计(count/averaging)

Collectors提供了一系列用于数据统计的静态方法:

  • 计数:count
  • 平均值:averagingIntaveragingLongaveragingDouble
  • 最值:maxByminBy
  • 求和:summingIntsummingLongsummingDouble
  • 统计以上所有:summarizingIntsummarizingLongsummarizingDouble

案例:统计员工人数、平均工资、工资总额、最高工资。

public class StreamTest {

    public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
// 求总数
long count = personList.size();
// 求平均工资
Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
// 求最高工资
Optional<Integer> max = personList.stream().map(Person::getSalary).max(Integer::compare);
// 求工资之和
int sum = personList.stream().mapToInt(Person::getSalary).sum();
// 一次性统计所有信息
DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));
System.out.println("员工总数:" + count);
System.out.println("员工平均工资:" + average);
System.out.println("员工最高工资:" + max.get());
System.out.println("员工工资总和:" + sum);
System.out.println("员工工资所有统计:" + collect);
}
}

输出结果:

员工总数:3
员工平均工资:7900.0
员工最高工资:8900
员工工资总和:23700
员工工资所有统计:DoubleSummaryStatistics{count=3, sum=23700.000000, min=7000.000000, average=7900.000000, max=8900.000000} Process finished with exit code 0

分组(partitioningBy/groupingBy)

  • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。
  • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组

public class StreamTest {

    public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "Washington"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "New York"));
personList.add(new Person("Anni", 8200, 24, "female", "New York"));
// 将员工按薪资是否高于8000分组
Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
// 将员工按性别分组
Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
// 将员工先按性别分组,再按地区分组
Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
System.out.println("员工按薪资是否大于8000分组情况:" + part);
System.out.println("员工按性别分组情况:" + group);
System.out.println("员工按性别、地区:" + group2);
}
}

输出结果:

员工按薪资是否大于8000分组情况:{false=[Person{name='Jack', salary=7000, age=25, sex='male', area='Washington'}, Person{name='Lily', salary=7800, age=21, sex='female', area='New York'}], true=[Person{name='Tom', salary=8900, age=23, sex='male', area='Washington'}, Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}]}
员工按性别分组情况:{female=[Person{name='Lily', salary=7800, age=21, sex='female', area='New York'}, Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}], male=[Person{name='Tom', salary=8900, age=23, sex='male', area='Washington'}, Person{name='Jack', salary=7000, age=25, sex='male', area='Washington'}]}
员工按性别、地区:{female={New York=[Person{name='Lily', salary=7800, age=21, sex='female', area='New York'}, Person{name='Anni', salary=8200, age=24, sex='female', area='New York'}]}, male={Washington=[Person{name='Tom', salary=8900, age=23, sex='male', area='Washington'}, Person{name='Jack', salary=7000, age=25, sex='male', area='Washington'}]}} Process finished with exit code 0

接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

public class StreamTest {

    public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, 23, "male", "New York"));
personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
String names = personList.stream().map(Person::getName).collect(Collectors.joining(","));
System.out.println("所有员工的姓名:" + names);
List<String> list = Arrays.asList("A", "B", "C");
String string = list.stream().collect(Collectors.joining("-"));
System.out.println("拼接后的字符串:" + string);
}
}

输出结果:

所有员工的姓名:Tom,Jack,Lily
拼接后的字符串:A-B-C Process finished with exit code 0

排序(sorted)

sorted,中间操作。有两种排序:

  • sorted():自然排序,流中元素需实现Comparable接口
  • sorted(Comparator com)Comparator排序器自定义排序

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

public class StreamTest {

    public static void main(String[] args) {
List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
personList.add(new Person("Lily", 8800, 26, "male", "New York"));
personList.add(new Person("Alisa", 9000, 26, "female", "New York"));
// 按工资升序排序(自然排序)
List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
.collect(Collectors.toList());
// 按工资倒序排序
List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
.map(Person::getName).collect(Collectors.toList());
// 先按工资再按年龄升序排序
List<String> newList3 = personList.stream()
.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
.collect(Collectors.toList());
// 先按工资再按年龄自定义排序(降序)
List<String> newList4 = personList.stream().sorted((p1, p2) -> {
if (p1.getSalary() == p2.getSalary()) {
return p2.getAge() - p1.getAge();
} else {
return p2.getSalary() - p1.getSalary();
}
}).map(Person::getName).collect(Collectors.toList());
System.out.println("按工资升序排序:" + newList);
System.out.println("按工资降序排序:" + newList2);
System.out.println("先按工资再按年龄升序排序:" + newList3);
System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
}
}

输出结果:

按工资升序排序:[Lily, Tom, Sherry, Jack, Alisa]
按工资降序排序:[Sherry, Jack, Alisa, Tom, Lily]
先按工资再按年龄升序排序:[Lily, Tom, Sherry, Jack, Alisa]
先按工资再按年龄自定义降序排序:[Alisa, Jack, Sherry, Tom, Lily] Process finished with exit code 0

提取/组合

流也可以进行合并、去重、限制、跳过等操作。

public class StreamTest {

    public static void main(String[] args) {
String[] arr1 = { "a", "b", "c", "d" };
String[] arr2 = { "d", "e", "f", "g" };
Stream<String> stream1 = Stream.of(arr1);
Stream<String> stream2 = Stream.of(arr2);
// concat:合并两个流 distinct:去重
List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
// limit:限制从流中获得前n个数据
List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
// skip:跳过前n个数据
List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());
System.out.println("流合并:" + newList);
System.out.println("limit:" + collect);
System.out.println("skip:" + collect2);
}
}

输出结果:

流合并:[a, b, c, d, e, f, g]
limit:[1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
skip:[3, 5, 7, 9, 11] Process finished with exit code 0

分页操作

stream api 的强大之处还不仅仅是对集合进行各种组合操作,还支持分页操作。

例如,将如下的数组从小到大进行排序,排序完成之后,从第1行开始,查询10条数据出来,操作如下:

//需要查询的数据
List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5, 10, 6, 20, 30, 40, 50, 60, 100);
List<Integer> dataList = numbers.stream().sorted(Integer::compareTo).skip(0).limit(10).collect(Collectors.toList());
System.out.println(dataList.toString());

输出结果:

[2, 2, 3, 3, 3, 5, 6, 7, 10, 20]

Process finished with exit code 0

并行操作

所谓并行,指的是多个任务在同一时间点发生,并由不同的cpu进行处理,不互相抢占资源;而并发,指的是多个任务在同一时间点内同时发生了,但由同一个cpu进行处理,互相抢占资源。

stream api 的并行操作和串行操作,只有一个方法区别,其他都一样,例如下面我们使用parallelStream来输出空字符串的数量:

List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd", "", "jkl");
// 采用并行计算方法,获取空字符串的数量
long count = strings.parallelStream().filter(String::isEmpty).count();
System.out.println(count);

在实际使用的时候,并行操作不一定比串行操作快!对于简单操作,数量非常大,同时服务器是多核的话,建议使用Stream并行!反之,采用串行操作更可靠!

集合转Map操作

在实际的开发过程中,还有一个使用最频繁的操作就是,将集合元素中某个主键字段作为key,元素作为value,来实现集合转map的需求,这种需求在数据组装方面使用的非常多。

public static void main(String[] args) {
List<Person> personList = new ArrayList<>();
personList.add(new Person("Tom",7000,25,"male","安徽"));
personList.add(new Person("Jack",8000,30,"female","北京"));
personList.add(new Person("Lucy",9000,40,"male","上海"));
personList.add(new Person("Airs",10000,40,"female","深圳"));
Map<Integer, Person> collect = personList.stream().collect(Collectors.toMap(Person::getAge, v -> v, (k1, k2) -> k1));
System.out.println(collect);
}

输出结果:

{40=Person{name='Lucy', salary=9000, age=40, sex='male', area='上海'}, 25=Person{name='Tom', salary=7000, age=25, sex='male', area='安徽'}, 30=Person{name='Jack', salary=8000, age=30, sex='female', area='北京'}}

Process finished with exit code 0

打开Collectors.toMap方法源码,一起来看看。

public static <T, K, U>
Collector<T, ?, Map<K,U>> toMap(Function<? super T, ? extends K> keyMapper,
Function<? super T, ? extends U> valueMapper,
BinaryOperator<U> mergeFunction) {
return toMap(keyMapper, valueMapper, mergeFunction, HashMap::new);
}

从参数表可以看出:

  • 第一个参数:表示 key
  • 第二个参数:表示 value
  • 第三个参数:表示某种规则

上文中的Collectors.toMap(Person::getAge, v -> v, (k1,k2) -> k1),表达的意思就是将age的内容作为keyv -> v是表示将元素person作为value,其中(k1,k2) -> k1表示如果存在相同的key,将第一个匹配的元素作为内容,第二个舍弃!

结尾

本文主要,围绕 jdk stream api 操作,结合实际的日常开发需求,做了简单总结和分享。希望你也能跟着一起敲一遍加深印象,相信都能掌握这些操作符的初步用法;后续文章我会带大家一步步深入Stream。看完了,希望你能点个赞,哈哈。

深度掌握 Java Stream 流操作,让你的代码高出一个逼格!的更多相关文章

  1. 全面吃透JAVA Stream流操作,让代码更加的优雅

    全面吃透JAVA Stream流操作,让代码更加的优雅 在JAVA中,涉及到对数组.Collection等集合类中的元素进行操作的时候,通常会通过循环的方式进行逐个处理,或者使用Stream的方式进行 ...

  2. Java IO流操作汇总: inputStream 和 outputStream【转】

    我们在进行Android java 开发的时候,经常会遇到各种IO流操作.IO流操作一般分为两类:字符流和字节流.以“Reader”结尾都是字符流,操作的都是字符型的数据:以“Stream”结尾的都是 ...

  3. 还看不懂同事的代码?超强的 Stream 流操作姿势还不学习一下

    Java 8 新特性系列文章索引. Jdk14都要出了,还不能使用 Optional优雅的处理空指针? Jdk14 都要出了,Jdk8 的时间处理姿势还不了解一下? 还看不懂同事的代码?Lambda ...

  4. 超强的Lambda Stream流操作

    原文:https://www.cnblogs.com/niumoo/p/11880172.html 在使用 Stream 流操作之前你应该先了解 Lambda 相关知识,如果还不了解,可以参考之前文章 ...

  5. 一文带你入门Java Stream流,太强了

    两个星期以前,就有读者强烈要求我写一篇 Java Stream 流的文章,我说市面上不是已经有很多了吗,结果你猜他怎么说:"就想看你写的啊!"你看你看,多么苍白的喜欢啊.那就&qu ...

  6. java字符流操作flush()方法及其注意事项

    java字符流操作flush()方法及其注意事项   flush()方法介绍 查阅文档可以发现,IO流中每一个类都实现了Closeable接口,它们进行资源操作之后都需要执行close()方法将流关闭 ...

  7. Java Stream 流如何进行合并操作

    1. 前言 Java Stream Api 提供了很多有用的 Api 让我们很方便将集合或者多个同类型的元素转换为流进行操作.今天我们来看看如何合并 Stream 流. 2. Stream 流的合并 ...

  8. stream流操作List工具类

    工作中操作List对于程序猿来说是"基本操作",为了更加便利,对JDK8的新特性stream流进行二次封装.话不多说,直接上代码 package com.mydemo; impor ...

  9. Java 文件流操作.

    一.概念 在Java中,文件的输入和输出是通过流(Stream)来实现的.一个流,必有源端和目的端,它们可以是计算机内存的某些区域,也可以是磁盘文件,甚至可以是 Internet 上的某个 URL.对 ...

随机推荐

  1. Netty 面试题 (史上最全、持续更新)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  2. 拦截导弹(CDQ分治,DP)

    很好的题,值得细细说,(果然又是个假期望)....... 首先我们提取信息,显然这是个三维偏序问题 用简单的DP式子表示需要满足 f[i]=max(f[1--j]+1)(v[j]<v[i],h[ ...

  3. 如何使用 jest 和 lint-staged 只检测发生改动的文件

    我们现在在推进 EPC 的过程中,单元测试是必备的技能,在本地的 Git commit 之前进行单测非常有必要,总不能把所有的单测的压力都放在流水线上. 毕竟在流水线运行单测的成本还是挺高的,从 pu ...

  4. 关于安装运行MYSQL8.0简单使用及注意事项 On Docker Desktop & WSL2

    背景介绍 MYSQL是业界非常流行的一款关系型数据库系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性.MySQL所使用的SQL语言是用于访问数据 ...

  5. @Autowired报错原因分析和4种解决方案!

    上图的报错信息相信大部分程序员都遇到过,奇怪的是虽然代码报错,但丝毫不影响程序的正常执行,也就是虽然编译器 IDEA 报错,但程序却能正常的执行,那这其中的原因又是为何? ​ 报错原因分析 报错的原因 ...

  6. 29、Tomcat只允许指定域名访问,禁用IP地址访问,防止恶意解析

    1.1.测试环境说明: Linux版本:7.6 IP地址:10.11.220.123/24 Tomcat版本:tomcat-8.5.37(端口号为8080) Jdk版本:1.8.0_202 1.2.配 ...

  7. Web 前端开发规范手册

    一.规范目的 Web 前端开发规范手册 1.1 概述 ......................................................................... ...

  8. @Valid 注解的使用

    限制 说明 @Null 限制只能为null @NotNull 限制必须不为null @AssertFalse 限制必须为false @AssertTrue 限制必须为true @DecimalMax( ...

  9. linux命令-------find命令之exec

    p.p1 { margin: 0; font: 18px "Hannotate SC"; color: rgba(4, 51, 255, 1); -webkit-text-stro ...

  10. runtime使用总结

    runtime这个东西,项目是很少用到的,但面试又避不可少,了解其内部的机制对底层的理解还是很有必要的. 1.动态添加属性 拓展类别属性的简单实现 a.定义字面量指针 static char dyna ...