大家好,我是对白。

何恺明时隔两年发一作论文,提出了一种视觉自监督学习新范式——

用掩蔽自编码器MAE,为视觉大模型开路。

这一次,北大博士生提出一个新方法CAE,在其下游任务中展现的泛化能力超过了MAE。

来看看这是一项什么样的研究?

这是一项什么研究?

自何恺明提出MAE以来,基于MIM,Masked Image Modeling,这一自监督学习表征算法就越来越引发关注。

它的主要思路,就是对输入图像进行分块和随机掩码操作,然后对掩码区域做预测。

预测的目标可以是Token ID(如微软提出的BEiT),也可以是RGB值(如MAE)。

通过MIM这一方法,编码器学习到好的表征,从而在下游任务中取得良好的泛化性能。

以往这一方法常见于NLP领域,但随着ViT的提出和发展,这一方法在视觉领域也取得了一些进展。

团队认为,近期两个代表性工作,BEiT和MAE,没有充分挖掘编码器encoder的潜力,限制了预训练学习的表征质量。

简单来说,BEiT的编码器只有一部分负责表征学习,还有一部分在做“前置/代理任务”(pretext task)。

到了MAE则是另一种情况,解码器也做了一部分表征学习,可能让编码器学会“偷懒”。

基于这一背景,团队提出了Context Autoencoder,简称CAE。核心设计思想是对“表征学习”和“前置/代理任务(pretext task)这两个功能做分离。

在预训练时,编码器只负责表征学习,解码器只负责解决前置任务,两者分工合作,将编码器表征能力最大化。

CAE包含四个部分。

1、编码器是一个ViT模型,负责学习图像可见patch的表征,提取图像特征Zv。

2、Latent contextual regressor(隐式上下文回归器)则是在此基础上预测出掩蔽patch的表征Zm。

3、解码器以Zm和对应的位置编码作为输入,通过Zm预测掩蔽patch的某些性质,比如RGB值、Token ID。这过程中Zv不会更新,表征学习任务全交给编码器。

4、Latent representation alignment对 Zm添加约束,希望 latent contextual regressor 的输出和编码器的输出在同一空间。具体来说,图像的掩蔽patch也将输入到编码器中(此过程不参与梯度反传),获得的这部分表征,作为Zm的学习目标。

Alignment很重要,如果想对掩码部分做好预测,要求latent contextual regressor 的输出(也是解码器的输入)含有比较好的语义信息。通过对齐操作,可以鼓励编码器的操作也含有好的语义信息,提高编码器的表征质量。

论文对alignment做了可视化:将全部patch输入编码器,然后将表征直接输入到解码器中,进行RGB的重建。CAE可以将原图重建出来 (第一行是原图,第二行是重建结果),说明编码器的输出和latent contextual regressor 的输出处于同一编码空间。

图片

如果训练时不做alignment约束,那么输出的结果将是这样…嗯,都是乱码。

图片

这种设计的编码器学到的表征也相对更差,下游任务结果也会变差。

损失函数由两部分组成,一个是对解码器预测的监督,使用的是cross-entropy loss;一个是对alignment的监督,使用MSE损失函数。

图片

除此之外,也进一步验证了以CAE为代表的MIM方法,要比Moco v3、DINO为代表的对比学习方法更适合下游任务。

该论文从随机裁剪操作的性质分析,认为随机裁剪有很大概率包含图像的中心区域。

而ImageNet-1K这种数据集中,中心区域通常是1000类标签集中的物体(如下图)。因此,对比学习方法主要提取图像中主体物体的特征。

而MIM方法能学到每个patch的特征,包括图像的背景区域,而不仅仅是图像主体物体,这让MIM学到的表征更适合下游检测分割任务。

论文对CAE和MoCo v3的注意力图做了可视化。红色表示注意力值更高,蓝色表示注意力值更低。第一行是原图,第二行是 MoCo v3,第三行是 CAE。可以看到,MoCo v3 的注意力图主要在图像的主体区域有高响应,而 CAE 能考虑到几乎所有patch。

实验结果

研究团队使用ViT-small和ViT-base在 ImageNet-1K 上进行实验,输入图像的分辨率224*224,每张图被分成14*14的patch,每个patch的大小为16*16。

每次将有75个patch被随机掩码,其余patch则为可见的。

本文参照BEiT,使用DALL-E tokenizer对输入图像token化,得到预测目标。

最终结果显示,在语义分割任务中,跟其他MIM方法,比如MAE、BEiT,以及对比学习、有监督预训练方法的表征结果更好。

图片

在物体检测、实例分割的结果也是如此。

最后欢迎大家关注我的微信公众号:对白的算法屋duibainotes),跟踪NLP、推荐系统和对比学习等机器学习领域前沿,日常还会分享我的创业心得和人生感悟。想进一步交流的同学也可以通过公众号加我的微信,和我一同探讨技术问题,谢谢!

北大博士生提出CAE,下游任务泛化能力优于何恺明MAE的更多相关文章

  1. lecture9-提高模型泛化能力的方法

    HInton第9课,这节课没有放论文进去.....如有不对之处还望指正.话说hinton的课果然信息量够大.推荐认真看PRML<Pattern Recognition and Machine L ...

  2. Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力

    AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...

  3. Gradient Centralization: 简单的梯度中心化,一行代码加速训练并提升泛化能力 | ECCV 2020 Oral

    梯度中心化GC对权值梯度进行零均值化,能够使得网络的训练更加稳定,并且能提高网络的泛化能力,算法思路简单,论文的理论分析十分充分,能够很好地解释GC的作用原理   来源:晓飞的算法工程笔记 公众号 论 ...

  4. 机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探

    1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去 ...

  5. 查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响

    代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen &qu ...

  6. ECCV 2018 | 旷视科技提出GridFace:通过学习局部单应变换实现人脸校正

    全球计算机视觉三大顶会之一 ECCV 2018(European Conference on Computer Vision)即将于 9 月 8 -14 日在德国慕尼黑拉开帷幕,旷视科技有多篇论文被此 ...

  7. 学界 | 华为诺亚方舟实验室提出新型元学习法 Meta-SGD ,在回归与分类任务中表现超群

    学界 | 华为诺亚方舟实验室提出新型元学习法 Meta-SGD ,在回归与分类任务中表现超群 机器之心发表于机器之心订阅 499 广告关闭 11.11 智慧上云 云服务器企业新用户优先购,享双11同等 ...

  8. 网络前置任务(Pretext task)和下游任务(downstream tasks)

    Pretext task 可以理解为是一种为达到特定训练任务而设计的间接任务. 比如,要训练一个网络来对 ImageNet 分类,可以表达为 $f_{\theta}(x): x \rightarrow ...

  9. 机器学习:模型泛化(L1、L2 和弹性网络)

    一.岭回归和 LASSO 回归的推导过程 1)岭回归和LASSO回归都是解决模型训练过程中的过拟合问题 具体操作:在原始的损失函数后添加正则项,来尽量的减小模型学习到的 θ 的大小,使得模型的泛化能力 ...

随机推荐

  1. Kube-OVN 1.2.0发布,携手社区成员打造高性能容器网络

    Kube-OVN 1.2.0 新版本如期而至,支持 Vlan 和 OVS-DPDK 两种类型的高性能网络接口.本次发布得益于社区的壮大,感谢Intel爱尔兰开发团队与锐捷网络开发团队持续积极参与Kub ...

  2. MASA Framework - 整体设计思路

    源起 年初我们在找一款框架,希望它有如下几个特点: 学习成本低 只需要学.Net每年主推的技术栈和业务特性必须支持的中间件,给开发同学减负,只需要专注业务就好 个人见解:一款好用的框架应该是补充,而不 ...

  3. Web开发之response

    Web服务器收到客户端的http请求,会针对每一次请求,分别创建一个用于代表请求的request对象.和代表响应的response对象. 我们要获取客户机提交过来的数据,只需要找request对象就行 ...

  4. 在Rainbond上使用Locust进行压力测试

    Locust简介 Locust 是一种易于使用.可编写脚本且可扩展的性能测试工具.并且有一个用户友好的 Web 界面,可以实时显示测试进度.甚至可以在测试运行时更改负载.它也可以在没有 UI 的情况下 ...

  5. 【视频解码性能对比】opencv + cuvid + gpu vs. ffmpeg + cpu

    视频大小:1168856 字节画面尺寸:480*848帧数:275opencv + cuvid + tesla P4, 解码性能:1426.84 fps ffmpeg 4.0 API + [Intel ...

  6. golang中的GOPATH使用和简单项目配置

    GOPATH 是 Go 语言的工作目录,他的值可以是一个目录路径,也可以是多个目录路径,每个目录都代表 go 语言的一个工作区. 我们开发 Golang 项目时,需要依赖一些别的代码包,这些包的存放路 ...

  7. VUE3 之 插槽的使用 - 这个系列的教程通俗易懂,适合新手

    1. 概述 非理性定律告诉我们: 人们总是习惯于以情感去判断眼前的事物,非理性的去做决定. 对于长远的利益,人们更愿意去选择短期的利益. 因此在做决定前要让自己冷静,理性的分析,让自己看的更远. 言归 ...

  8. Linux配置 ftp 和 ftp简单介绍

    一.ftp概念? /* ftp是一个协议和http协议都是叫协议 tcp和udp也是协议 ftp是文件(以流的形式进行传输)传输协议(针对于文件进行上传和下载) */ 1.如果ftp服务器有多台,服务 ...

  9. 「JOISC 2014 Day1」巴士走读

    「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...

  10. 云服务器的windows系统上部署项目

    1.购买云服务器 以百度云服务器为例 https://cloud.baidu.com/campaign/midyear2020/index.html?track=cp:npinzhuan|pf:pc| ...