高效读取大文件,再也不用担心 OOM 了!
内存读取
第一个版本,采用内存读取的方式,所有的数据首先读读取到内存中,程序代码如下:
Stopwatch stopwatch = Stopwatch.createStarted();
// 将全部行数读取的内存中
List<String> lines = FileUtils.readLines(new File("temp/test.txt"), Charset.defaultCharset());
for (String line : lines) {
// pass
}
stopwatch.stop();
System.out.println("read all lines spend " + stopwatch.elapsed(TimeUnit.SECONDS) + " s");
// 计算内存占用
logMemory();
logMemory方法如下:
MemoryMXBean memoryMXBean = ManagementFactory.getMemoryMXBean();
//堆内存使用情况
MemoryUsage memoryUsage = memoryMXBean.getHeapMemoryUsage();
//初始的总内存
long totalMemorySize = memoryUsage.getInit();
//已使用的内存
long usedMemorySize = memoryUsage.getUsed(); System.out.println("Total Memory: " + totalMemorySize / (1024 * 1024) + " Mb");
System.out.println("Free Memory: " + usedMemorySize / (1024 * 1024) + " Mb");
上述程序中,使用 Apache Common-Io 开源第三方库,FileUtils#readLines将会把文件中所有内容,全部读取到内存中。
这个程序简单测试并没有什么问题,但是等拿到真正的数据文件,运行程序,很快程序发生了 OOM。
之所以会发生 OOM,主要原因是因为这个数据文件太大。假设上面测试文件 test.txt总共有 200W 行数据,文件大小为:740MB。
通过上述程序读取到内存之后,在我的电脑上内存占用情况如下:

可以看到一个实际大小为 700 多 M 的文件,读到内存中占用内存量为 1.5G 之多。而我之前的程序,虚拟机设置内存大小只有 1G,所以程序发生了 OOM。
当然这里最简单的办法就是加内存呗,将虚拟机内存设置到 2G,甚至更多。不过机器内存始终有限,如果文件更大,还是没有办法全部都加载到内存。
不过仔细一想真的需要将全部数据一次性加载到内存中?
很显然,不需要!
在上述的场景中,我们将数据到加载内存中,最后不还是一条条处理数据。
所以下面我们将读取方式修改成逐行读取。
逐行读取
逐行读取的方式比较多,这里主要介绍两种方式:
BufferReader
Apache Commons IO
Java8 stream
BufferReader
我们可以使用 BufferReader#readLine 逐行读取数据。
try (BufferedReader fileBufferReader = new BufferedReader(new FileReader("temp/test.txt"))) {
String fileLineContent;
while ((fileLineContent = fileBufferReader.readLine()) != null) {
// process the line.
}
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
Apache Commons IO
Common-IO 中有一个方法 FileUtils#lineIterator可以实现逐行读取方式,使用代码如下:
Stopwatch stopwatch = Stopwatch.createStarted();
LineIterator fileContents = FileUtils.lineIterator(new File("temp/test.txt"), StandardCharsets.UTF_8.name());
while (fileContents.hasNext()) {
fileContents.nextLine();
// pass
}
logMemory();
fileContents.close();
stopwatch.stop();
System.out.println("read all lines spend " + stopwatch.elapsed(TimeUnit.SECONDS) + " s");
这个方法返回一个迭代器,每次我们都可以获取的一行数据。
其实我们查看代码,其实可以发现 FileUtils#lineIterator,其实用的就是 BufferReader,感兴趣的同学可以自己查看一下源码。
Java8 stream
Java8 Files 类新增了一个 lines,可以返回 Stream我们可以逐行处理数据。
Stopwatch stopwatch = Stopwatch.createStarted();
// lines(Path path, Charset cs)
try (Stream<String> inputStream = Files.lines(Paths.get("temp/test.txt"), StandardCharsets.UTF_8)) {
inputStream
.filter(str -> str.length() > 5)// 过滤数据
.forEach(o -> {
// pass do sample logic
});
}
logMemory();
stopwatch.stop();
System.out.println("read all lines spend " + stopwatch.elapsed(TimeUnit.SECONDS) + " s");
使用这个方法有个好处在于,我们可以方便使用 Stream 链式操作,做一些过滤操作。
注意:这里我们使用
try-with-resources方式,可以安全的确保读取结束,流可以被安全的关闭。
并发读取
逐行的读取的方式,解决我们 OOM 的问题。不过如果数据很多,我们这样一行行处理,需要花费很多时间。
上述的方式,只有一个线程在处理数据,那其实我们可以多来几个线程,增加并行度。
下面在上面的基础上,就抛砖引玉,介绍下自己比较常用两种并行处理方式。
逐行批次打包
第一种方式,先逐行读取数据,加载到内存中,等到积累一定数据之后,然后再交给线程池异步处理。
@SneakyThrows
public static void readInApacheIOWithThreadPool() {
// 创建一个 最大线程数为 10,队列最大数为 100 的线程池
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 10, 60l, TimeUnit.SECONDS, new LinkedBlockingDeque<>(100));
// 使用 Apache 的方式逐行读取数据
LineIterator fileContents = FileUtils.lineIterator(new File("temp/test.txt"), StandardCharsets.UTF_8.name());
List<String> lines = Lists.newArrayList();
while (fileContents.hasNext()) {
String nextLine = fileContents.nextLine();
lines.add(nextLine);
// 读取到十万的时候
if (lines.size() == 100000) {
// 拆分成两个 50000 ,交给异步线程处理
List<List<String>> partition = Lists.partition(lines, 50000);
List<Future> futureList = Lists.newArrayList();
for (List<String> strings : partition) {
Future<?> future = threadPoolExecutor.submit(() -> {
processTask(strings);
});
futureList.add(future);
}
// 等待两个线程将任务执行结束之后,再次读取数据。这样的目的防止,任务过多,加载的数据过多,导致 OOM
for (Future future : futureList) {
// 等待执行结束
future.get();
}
// 清除内容
lines.clear();
} }
// lines 若还有剩余,继续执行结束
if (!lines.isEmpty()) {
// 继续执行
processTask(lines);
}
threadPoolExecutor.shutdown();
}
private static void processTask(List<String> strings) {
for (String line : strings) {
// 模拟业务执行
try {
TimeUnit.MILLISECONDS.sleep(10L);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
上述方法,等到内存的数据到达 10000 的时候,拆封两个任务交给异步线程执行,每个任务分别处理 50000 行数据。
后续使用 future#get(),等待异步线程执行完成之后,主线程才能继续读取数据。
之所以这么做,主要原因是因为,线程池的任务过多,再次导致 OOM 的问题。
大文件拆分成小文件
第二种方式,首先我们将一个大文件拆分成几个小文件,然后使用多个异步线程分别逐行处理数据。
public static void splitFileAndRead() throws Exception {
// 先将大文件拆分成小文件
List<File> fileList = splitLargeFile("temp/test.txt");
// 创建一个 最大线程数为 10,队列最大数为 100 的线程池
ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(10, 10, 60l, TimeUnit.SECONDS, new LinkedBlockingDeque<>(100));
List<Future> futureList = Lists.newArrayList();
for (File file : fileList) {
Future<?> future = threadPoolExecutor.submit(() -> {
try (Stream inputStream = Files.lines(file.toPath(), StandardCharsets.UTF_8)) {
inputStream.forEach(o -> {
// 模拟执行业务
try {
TimeUnit.MILLISECONDS.sleep(10L);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
} catch (IOException e) {
e.printStackTrace();
}
});
futureList.add(future);
}
for (Future future : futureList) {
// 等待所有任务执行结束
future.get();
}
threadPoolExecutor.shutdown();
}
private static List<File> splitLargeFile(String largeFileName) throws IOException {
LineIterator fileContents = FileUtils.lineIterator(new File(largeFileName), StandardCharsets.UTF_8.name());
List<String> lines = Lists.newArrayList();
// 文件序号
int num = 1;
List<File> files = Lists.newArrayList();
while (fileContents.hasNext()) {
String nextLine = fileContents.nextLine();
lines.add(nextLine);
// 每个文件 10w 行数据
if (lines.size() == 100000) {
createSmallFile(lines, num, files);
num++;
}
}
// lines 若还有剩余,继续执行结束
if (!lines.isEmpty()) {
// 继续执行
createSmallFile(lines, num, files);
}
return files;
}
上述方法,首先将一个大文件拆分成多个保存 10W 行的数据的小文件,然后再将小文件交给线程池异步处理。
由于这里的异步线程每次都是逐行从小文件的读取数据,所以这种方式不用像上面方法一样担心 OOM 的问题。
另外,上述我们使用 Java 代码,将大文件拆分成小文件。这里还有一个简单的办法,我们可以直接使用下述命令,直接将大文件拆分成小文件:
# 将大文件拆分成 100000 的小文件
split -l 100000 test.txt
后续 Java 代码只需要直接读取小文件即可。
总结
当我们从文件读取数据时,如果文件不是很大,我们可以考虑一次性读取到内存中,然后快速处理。
如果文件过大,我们就没办法一次性加载到内存中,所以我们需要考虑逐行读取,然后处理数据。但是单线程处理数据毕竟有限,所以我们考虑使用多线程,加快处理数据。
本篇文章我们只是简单介绍了下,数据从文件读取几种方式。数据读取之后,我们肯定还需要处理,然后最后会存储到数据库中或者输出到另一个文件中。
这个过程,说实话比较麻烦,因为我们的数据源文件,可能是 txt,也可能是 excel,这样我们就需要增加多种读取方法。同样的,当数据处理完成之后,也有同样的问题。
不过好在,上述的问题我们可以使用 Spring Batch 完美解决。
高效读取大文件,再也不用担心 OOM 了!的更多相关文章
- Java高效读取大文件
1.概述 本教程将演示如何用Java高效地读取大文件.这篇文章是Baeldung (http://www.baeldung.com/) 上“Java——回归基础”系列教程的一部分. 2.在内存中读取 ...
- Java高效读取大文件(转)
1.概述 本教程将演示如何用Java高效地读取大文件.这篇文章是Baeldung(http://www.baeldung.com/) 上“Java——回归基础”系列教程的一部分. 2.在内存中读取 读 ...
- 完全免费,再也不用担心转pdf文件乱来乱去的问题了
完全免费,再也不用担心转pdf文件乱来乱去的问题了. 源代码:https://github.com/xlgwr/WpsToPdf.git 第三方插件Bye Bye... 功能说明 主要引用Wps金山办 ...
- 使用BeautifulSoup高效解析网页,再也不用担心睡不着觉了
BeautifulSoup是一个可以从 HTML 或 XML 文件中提取数据的 Python 库 那需要怎么使用呢? 首先我们要安装一下这个库 1.pip install beautifulsoup4 ...
- php如何高效的读取大文件
通常来说在php读取大文件的时候,我们采用的方法一般是一行行来讲取,而不是一次性把文件全部写入内存中,这样会导致php程序卡死,下面就给大家介绍这样一个例子. 需求:有一个800M的日志文件,大约有5 ...
- 妈妈再也不用担心别人问我是否真正用过redis了
1. Memcache与Redis的区别 1.1. 存储方式不同 1.2. 数据支持类型 1.3. 使用底层模型不同 2. Redis支持的数据类型 3. Redis的回收策略 4. Redis小命令 ...
- 教会舍友玩 Git (再也不用担心他的学习)
舍友长大想当程序员,我和他爷爷奶奶都可高兴了,写他最喜欢的喜之郎牌Git文章,学完以后,再也不用担心舍友的学习了(狗头)哪里不会写哪里 ~~~ 一 先来聊一聊 太多东西属于,总在用,但是一直都没整理的 ...
- 保姆级神器 Maven,再也不用担心项目构建搞崩了
今天来给大家介绍一款项目构建神器--Maven,不仅能帮我们自动化构建,还能够抽象构建过程,提供构建任务实现:它跨平台,对外提供了一致的操作接口,这一切足以使它成为优秀的.流行的构建工具,从此以后,再 ...
- 【阿里云产品公测】离线归档OAS,再也不用担心备份空间了
[阿里云产品公测]离线归档OAS,再也不用担心备份空间了 作者:阿里云用户莫须有3i 1 起步 1.1 初识OAS 啥是OAS,请看官方说明: 引用: 开放归档服务(Open Archive Se ...
随机推荐
- v-html | 数据内容包含元素标签或者样式
问题 如果我们展示的数据包含元素标签或者样式,我们想展示标签或样式所定义的属性作用,该怎么进行渲染 插值表达式{{}}和v-text指令被直接解析为了字符串元素. <body> <d ...
- [linux]centos7.4安装nginx
下载nginx wget http://nginx.org/download/nginx-1.5.6.tar.gz 解压包安装在/opt/nginx. 目录下, 1.安装gcc(centos 7之后一 ...
- Java踩坑之List的removeAll方法
最近在公司写东西,发现List的removeAll方法报错 Demo代码如下: List<Long> ids1 = Arrays.asList(1L, 3L, 2L); List<L ...
- Java学习(八)
今天学了类的封装知识与编译器的使用,和c++的大体一致,只有一些细节不同,像private的使用等. 小试牛刀,写了一个封装后的类,并且测试. public class Student { priva ...
- Git知识总结
Git知识总结 Git安装 windows 在git官网中下载安装程序,然后按默认选项安装即可 安装完成后,在开始菜单里找到"Git"->"Git Bash&quo ...
- 菜鸡的Java笔记 第二十六 - java 内部类
/* innerClass 从实际的开发来看,真正写到内部类的时候是在很久以后了,短期内如果是自己编写代码,几乎是见不到内部类出现的 讲解它的目的第一个是为了解释概念 ...
- Windows11 如何让开始菜单出现休眠选项(Windows11如何开启休眠功能?)Windows家庭版
1. Windows11新版的菜单找不到调休眠的选项了,所以我们可以用win+r键调出运行,输入control,回车调出「控制面板」 配图: 2. 我的电脑系统是家庭版的Windows11,其它版本这 ...
- nginx 支持websocket
nginx 反向代理websocket nginx配置 请求地址及路径:ws://x.x.x.x/web/springws/websocket.ws 解析 map 指令 上面 nginx.conf 配 ...
- [gym102220I]Temperature Survey
(为了方便,以下记$a_{0}=0,a_{n+1}=n$,并将$n$加上1) 构造一个$n$行的网格图,从上到下第$i$行有$a_{i}$个格子,格子左对齐 记第$i$行第$j$个格子为$(i ...
- [luogu3781]切树游戏
考虑暴力的dp,即用$f_{i,j}$表示以$i$为根的子树内,强制$i$必须选且异或为$j$的方案数,转移用FWT即可,求出该dp数组的时间复杂度为$o(nm\log_{2}m)$ 由于是全局的方案 ...