The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other. Thus, a solution requires that no two queens share the same row, column, or diagonal. The eight queens puzzle is an example of the more general N queens problem of placing N non-attacking queens on an N×N chessboard. (From Wikipedia - "Eight queens puzzle".)

Here you are NOT asked to solve the puzzles. Instead, you are supposed to judge whether or not a given configuration of the chessboard is a solution. To simplify the representation of a chessboard, let us assume that no two queens will be placed in the same column. Then a configuration can be represented by a simple integer sequence (Q1, Q2, ..., QN), where Qi is the row number of the queen in the i-th column. For example, Figure 1 can be represented by (4, 6, 8, 2, 7, 1, 3, 5) and it is indeed a solution to the 8 queens puzzle; while Figure 2 can be represented by (4, 6, 7, 2, 8, 1, 9, 5, 3) and is NOT a 9 queens' solution.

  
Figure 1    Figure 2

Input Specification:

Each input file contains several test cases. The first line gives an integer K (1 < K <= 200). Then K lines follow, each gives a configuration in the format "N Q1 Q2 ... QN", where 4 <= N <= 1000 and it is guaranteed that 1 <= Qi <= N for all i=1, ..., N. The numbers are separated by spaces.

Output Specification:

For each configuration, if it is a solution to the N queens problem, print "YES" in a line; or "NO" if not.

Sample Input:

4
8 4 6 8 2 7 1 3 5
9 4 6 7 2 8 1 9 5 3
6 1 5 2 6 4 3
5 1 3 5 2 4

Sample Output:

YES
NO
NO
YES
 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
int num[], N, K, hashTB[];
int main(){
scanf("%d", &K);
for(int i = ; i < K; i++){
scanf("%d", &N);
fill(hashTB, hashTB + , );
for(int j = ; j <= N; j++){
scanf("%d", &num[j]);
hashTB[num[j]]++;
}
int tag = ;
for(int j = ; j <= N; j++){
if(hashTB[j] != ){
tag = ;
break;
}
int m = j - , n = num[j] - ;
while(m >= && m <= N && j >= && j <= N){
if(num[m] == n){
tag = ;
break;
}
m--; n--;
}
m = j + ; n = num[j] + ;
while(m >= && m <= N && j >= && j <= N){
if(num[m] == n){
tag = ;
break;
}
m++; n++;
}
}
if(tag == )
printf("NO\n");
else printf("YES\n");
}
cin >> N;
return ;
}

总结:

1、由于已经保证了不在同一列,所以只需要检查行和斜线即可。

2、检查a、b两点间的斜线,可用abs(Xa - Xb) == abs(Ya - Yb)。

A1128. N Queens Puzzle的更多相关文章

  1. PAT A1128 N Queens Puzzle (20 分)——数学题

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboar ...

  2. PAT甲级——A1128 N Queens Puzzle【20】

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8 chessboard ...

  3. PAT_A1128#N Queens Puzzle

    Source: PAT A1128 N Queens Puzzle (20 分) Description: The "eight queens puzzle" is the pro ...

  4. Poj 3239 Solution to the n Queens Puzzle

    1.Link: http://poj.org/problem?id=3239 2.Content: Solution to the n Queens Puzzle Time Limit: 1000MS ...

  5. Pat1128:N Queens Puzzle

    1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...

  6. PAT 1128 N Queens Puzzle

    1128 N Queens Puzzle (20 分)   The "eight queens puzzle" is the problem of placing eight ch ...

  7. PAT甲级 1128. N Queens Puzzle (20)

    1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...

  8. PAT 1128 N Queens Puzzle[对角线判断]

    1128 N Queens Puzzle(20 分) The "eight queens puzzle" is the problem of placing eight chess ...

  9. PAT 甲级 1128 N Queens Puzzle

    https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360 The "eight queens ...

随机推荐

  1. springmvc配置文件

    1 springMVC的配置文件路径问题 https://www.cnblogs.com/ysloong/p/6071450.html

  2. ArcGIS 中UniqueValueRenderer和SimpleRenderer的异同点

    唯一值渲染器:UniqueValueRenderer用符号表示一组有匹配属性的图形,这通常用于名词或字符串数据.SimpleRenderer是使用单一符号进行着色分类,不涉及对要素的数据进行处理.这种 ...

  3. Stream、FileStream、MemoryStream的区别

    1.Stream:流,在msdn的定义:提供字节序列的一般性视图,Stream提供了读写流的方法是以字节的形式从流中读取内容.而我们经常会用到从字节流中读取文本或者写入文本,微软提供了StreamRe ...

  4. Python实现快速排序--数据结构

    快速排序(Quick Sort) 快速排序是由东尼·霍尔所发展的一种排序算法.在平均状况下,排序n个元素要O(nlogn)次比较.在最坏状况下则需要O(n^2)次比较,但这种状况并不常见.事实上,快速 ...

  5. 【python练习题】程序10

    #10.题目:暂停一秒输出,并格式化当前时间. import time print(time.time())#timestamp print(time.localtime(time.time()))# ...

  6. Nintex History in Form Table

    一.设置参数 二.调用WebService 三.For Each 调用 四.拼写HTML Table 结果: 特别提示:过滤人只要根据人来循环即可

  7. codeforces347B

    Fixed Points CodeForces - 347B A permutation of length n is an integer sequence such that each integ ...

  8. [离散时间信号处理学习笔记] 3. 一些基本的LTI系统

    首先我们需要先对离散时间系统进行概念上的回顾: $y[n] = T\{ x[n] \}$ 上面的式子表征了离散时间系统,也就是把输入序列$x[n]$,映射称为$y[n]$的输出序列. 不过上述式子也可 ...

  9. Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)

    题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算  如c(8,3) 如果手算就是   8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...

  10. Django+Vue打造购物网站(二)

    配置后台管理 xadmin直接使用之前的在线教育的那个就可以了 users/adminx.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Tim ...