UVA11324 The Largest Clique (强连通缩点+DP最长路)
<题目链接>
题目大意:
给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行)。
解题分析:
该点集需满足两个要求:1.任意两点至少有一方能够到达另外一点;2.点数尽可能的多。
通过画图分析可以知道,对于那些强连通分量来说,要不就全部加入该点集,要不就全部不能加入,所以直接对原图进行缩点,进行重新构图。然后,根据重新构造的DAG图我们可以知道,要使该点集中任意两点至少有一方能够到达另外一点,并且要求点数尽可能的多,可以发现,其实就是让我们求缩点后的最长路。
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std; #define pb push_back
#define clr(a,b) memset(a,b,sizeof(a))
#define rep(i,s,t) for(int i=s;i<=t;i++)
const int N = 1e3+,M = 5e4+;
int n,m,tot,tott,top,scc;
int head[N],belong[N],dfn[N],low[N],stk[N],instk[N],dp[N],cnt[N];
vector<int>G[N];
struct Edge{
int to,next;
}edge[M];
void init(){
rep(i,,n)G[i].clear();
tot=scc=top=tott=;
clr(head,-);clr(low,);clr(dfn,);clr(stk,);clr(instk,);clr(belong,);clr(dp,);clr(cnt,);
}
void addedge(int u,int v){
edge[++tot].to=v,edge[tot].next=head[u];
head[u]=tot;
}
void Tarjan(int u){ //进行缩点
dfn[u]=low[u]=++tott;
stk[++top]=u;instk[u]=;
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}else if(instk[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u]){
scc++;
while(true){
int v=stk[top--];
instk[v]=;
belong[v]=scc;
cnt[scc]++;
if(v==u)break;
}
}
}
//记忆化搜索求以u为起点的最长路,点权为"点"中点的个数
int DFS(int u){
if(dp[u])return dp[u];
int ans=cnt[u];
for(int i=;i<G[u].size();i++){
int v=G[u][i];
ans=max(ans,DFS(v)+cnt[u]);
}
return dp[u]=ans;
}
int main(){
int T;scanf("%d",&T);while(T--){
init();
scanf("%d%d",&n,&m);
rep(i,,m){
int u,v;scanf("%d%d",&u,&v);
addedge(u,v);
}
rep(i,,n)
if(!dfn[i])Tarjan(i);
//对图进行缩点,重新构图
rep(u,,n) for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(belong[u]!=belong[v])
G[belong[u]].pb(belong[v]);
}
int ans=;
rep(i,,scc)
ans=max(ans,DFS(i)); //求缩点后图的最长路
printf("%d\n",ans);
}
}
2018-11-28
UVA11324 The Largest Clique (强连通缩点+DP最长路)的更多相关文章
- ZOJ 3795 Grouping (强连通缩点+DP最长路)
<题目链接> 题目大意: n个人,m条关系,每条关系a >= b,说明a,b之间是可比较的,如果还有b >= c,则说明b,c之间,a,c之间都是可以比较的.问至少需要多少个集 ...
- UVA - 11324 The Largest Clique (强连通缩点+dp)
题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...
- UVA11324 The Largest Clique[强连通分量 缩点 DP]
UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...
- uva11324 The Largest Clique --- 强连通+dp
给一个有向图G,求一个子图要求当中随意两点至少有一边可达. 问这个子图中最多含多少个顶点. 首先找SCC缩点建图.每一个点的权值就是该点包括点的个数. 要求当中随意两点可达,实际上全部边仅仅能同方向, ...
- UVA - 11324 The Largest Clique 强连通缩点+记忆化dp
题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...
- BZOJ 5450 轰炸 (强连通缩点+DAG最长路)
<题目链接> 题目大意: 有n座城市,城市之间建立了m条有向的地下通道.你需要发起若干轮轰炸,每轮可以轰炸任意多个城市.但每次轰炸的城市中,不能存在两个不同的城市i,j满足可以通过地道从城 ...
- UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP
题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u ...
- 【bzoj1179】[Apio2009]Atm Tarjan缩点+Spfa最长路
题目描述 输入 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来M行,每行两个整数,这两个整数都在1到N之间,第i+1行的两个整数表示第i条道路的起点和终点的路口编号.接下来N行,每 ...
- Tarjan缩点+Spfa最长路【p3627】[APIO2009] 抢掠计划
Description Siruseri 城中的道路都是单向的.不同的道路由路口连接.按照法律的规定, 在每个路口都设立了一个 Siruseri 银行的 ATM 取款机.令人奇怪的是,Siruseri ...
随机推荐
- swift 学习- 16 -- 构造过程 02
// 类的继承 和 构造过程 // 类里面的所有的存储型属性 -- 包括所有继承自父类的属性 -- 都必须在构造过程中设置初始值 // Swift 为类类型提供了 两种构造器来确保实例中所有的存储属 ...
- Java编制至今总结和学习报告
日期:2018.8.19 星期日 博客期:006 说个事,本来想把博客园做一个交流平台的,可是交流度有点少...嗯...我看我还是把这个平台当作经验传授平台和自己的作品发布平台吧!Java的知识详解, ...
- OrCAD Capture CIS 16.6 导出BOM
OrCAD Capture CIS 16.6 一.选择设计文件:菜单:Tools > Bill of Materials... 二.Bill of Materials > Open in ...
- spring cloud Config--server
概述 使用Config Server,您可以在所有环境中管理应用程序的外部属性.客户端和服务器上的概念映射与Spring Environment和PropertySource抽象相同,因此它们与Spr ...
- The error may exist in com/bjpowernode/dao/StudentDao.xml ### Cause: org.apache.ibatis.builder.BuilderException: Error parsing SQL Mapper Configuration. Cause: org.apache.ibatis.builder.BuilderExcept
The error may exist in com/bjpowernode/dao/StudentDao.xml### Cause: org.apache.ibatis.builder.Builde ...
- tempalte模板
tempalte模板层: 功能:为了更有逻辑的将数据库中的数据渲染到模板中: 模拟数据源: DB = [ {"hostname":"c1.com"," ...
- thinkphp5.0和thinkphp3.2的区别不同之处
先看目录结构: thinkphp 5.0的目录结构, 文档:https://www.kancloud.cn/manual/thinkphp5/118008 project 应用部署目录 ├─appli ...
- springboot1.5.4 集成cxf完整实例
WebService 服务端 添加依赖 <?xml version="1.0" encoding="UTF-8"?> <project xml ...
- 【bzoj3717】[PA2014]Pakowanie 状压dp
题解: 自己在这一类问题上想到的总是3^n的枚举法 首先背包从大到小排序 f[i]表示搞出为i的状态至少要用几个背包,g[i]表示最大剩余容量 这样就可以2^n*n 因为这么做利用了状态之间的先后顺序 ...
- 【NOI2017】泳池
题解: 满分的笛卡尔树以后再学吧.. 40分还是比较好想的 但是状态挺复杂的 直接贴代码了 代码: #include <bits/stdc++.h> using namespace std ...