题目描述

You are given an integer array of length n.

You have to choose some subsequence of this array of maximum length such that this subsequence forms a increasing sequence of consecutive integers. In other words the required sequence should be equal to [x,x+1,…,x+k−1] for some value x and length k.

Subsequence of an array can be obtained by erasing some (possibly zero) elements from the array. You can erase any elements, not necessarily going successively. The remaining elements preserve their order. For example, for the array [5,3,1,2,4] the following arrays are subsequences: [3], [5,3,1,2,4], [5,1,4], but the array [1,3] is not.

题目大意

给你n个数的序列,求出最长的连续上升子序列(每个元素之间只差\(1\)),并输出在原序列中的位置。

40分做法

非常容易想到的暴力,我们开\(200000\)个\(vector\),每次在已有的数组中找是否有一个数组的最后一个元素是当前数-1,如果有那么就插入到长度最长的一个,如果没有,那么就新开一个数组来存储新的数列。

40分代码

#include<bits/stdc++.h>
#define LL long long
#define pb push_back
using namespace std;
struct node{int x,p;};
vector<node>ans[200005];//其实可以用vector套vector
int cnt=0,n,len[200005],ret=0,res=0;
LL a[200005];
LL r(){LL x=0,w=0;char ch=0;while(!isdigit(ch))w|=ch=='-',ch=getchar();while(isdigit(ch))x=(x<<1)+(x<<3)+(ch^48),ch=getchar();return w?-x:x;}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)a[i]=r();
    for(int i=1;i<=n;i++){
        int pos=-1;
        for(int j=1;j<=cnt;j++)if(ans[j][ans[j].size()-1].x==a[i]-1&&(pos==-1||ans[pos].size()<=ans[j].size()))pos=j;//找到已有的数组,在插入
        if(pos==-1)ans[++cnt].pb((node){a[i],i}); else ans[pos].pb((node){a[i],i});//如果没有合法的数组就新开一个。
    }
    for(int i=1;i<=cnt;i++)if(ret<ans[i].size())ret=ans[i].size(),res=i;
    printf("%d\n",ret); for(int i=0;i<ans[res].size();i++)printf("%d ",ans[res][i].p);
    return 0;
}

100分做法

其实是非常简单的DP问题,我们用\(F[i]\)表示以\(i\)为结尾的最长的序列,那么转移方程就是:\(F[i]=F[i-1]+1\)。

但是这里的\(F\)数组的下标非常大,那么我们就用\(map\)来映射就可以了。

100分代码

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define N 200005
using namespace std;
int a[N],n;
map<int,int>f;
int r(){int w=0,x=0;char ch=0;while(!isdigit(ch))w|=ch=='-',ch=getchar();while(isdigit(ch))x=(x<<1)+(x<<3)+(ch^48),ch=getchar();return w?-x:x;}
int main(){
    int cas=r();n=r();
    int x=0,Max=0;
    for(int i=1;i<=n;i++){
        a[i]=r();f[a[i]]=f[a[i]-1]+1;
        if(f[a[i]]>Max)Max=f[a[i]],x=a[i];
    }
    int t=x-Max+1;printf("%d\n",Max);
    for(int i=1;i<=n;i++)if(a[i]==t){printf("%d ",i);t++;}
    return 0;
}

[CF977F]Consecutive Subsequence的更多相关文章

  1. Consecutive Subsequence CodeForces - 977F(dp)

    Consecutive Subsequence CodeForces - 977F 题目大意:输出一序列中的最大的连续数列的长度和与其对应的下标(连续是指 7 8 9这样的数列) 解题思路: 状态:把 ...

  2. codeforce 977 F. Consecutive Subsequence

    F. Consecutive Subsequence time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  3. Consecutive Subsequence CodeForces - 977F (map优化DP)·

    You are given an integer array of length nn. You have to choose some subsequence of this array of ma ...

  4. Consecutive Subsequence (DP+map)

    You are given an integer array of length nn. You have to choose some subsequence of this array of ma ...

  5. 最大连续子序列和问题(Maximum Consecutive Subsequence Sum)

    该算法的定义是:给出一个int序列,元素有正有负,找出其中的最大连续子序列的和. 例如:-2,11,-4,13,-5-2,:最大和为20(11,-4, 13). 怎么考虑这个问题呢? 要充分利用,连续 ...

  6. Codeforces Round #479 (Div. 3) F. Consecutive Subsequence (简单dp)

    题目:https://codeforces.com/problemset/problem/977/F 题意:一个序列,求最长单调递增子序列,但是有一个要求是中间差值都是1 思路:dp,O(n)复杂度, ...

  7. Codeforces 977F - Consecutive Subsequence - [map优化DP]

    题目链接:http://codeforces.com/problemset/problem/977/F 题意: 给定一个长度为 $n$ 的整数序列 $a[1 \sim n]$,要求你找到一个它最长的一 ...

  8. CF 977 F. Consecutive Subsequence

    题意: 第一场div3, 求的是一个序列中最长连续(a,a+1,a+2...)子序列. 分析: 设一个DP[i] 表示 序列以i结尾的最长长度, 一开始都设为0. 那么如果这个数是a, 他的最长长度就 ...

  9. 【Codeforces 977F】Consecutive Subsequence

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 设f[i]表示i作为序列的最后一个数字,最长的连续序列的长度. 用f[i]和f[i-1]+1来转移即可 [代码] import java.io ...

随机推荐

  1. 3proxy.cfg 配置文件解析

    最新配置文件的man文档所在位置: /程序目录/doc/html/man3/3proxy.cfg.3.html 官网: https://3proxy.ru/ Download 3proxy tiny ...

  2. oracle导出用户下单表或者多表,导入到别的服务器用户下

      导出   exp 用户名/密码 file=存放dmp的名称的目录 statistics=none tables =(表名,表名,表名) exp creditfw/credit file=d:\te ...

  3. oracle查询不走索引的一些情况(索引失效)

    Oracle建立索引的目的是为了避免全表扫描,提高查询的效率. 但是有些情况下发现即使建立了索引,但是写出来的查询还是很慢,然后会发现是索引失效导致的,所以需要了解一下那些情况会导致索引失效,即查询不 ...

  4. Windows10 等 administrator 打开IE 或者edge的方法

    gpedit.msc 组策略处理即可

  5. 二叉搜索树的第k个节点

    给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8)    中,按结点数值大小顺序第三小结点的值为4. = =一看就想到中序遍历 public class Soluti ...

  6. Django项目目录介绍

    一个小问题: 什么是根目录:就是没有路径,只有域名..url(r'^$') 补充一张关于wsgiref模块的图片 一.MTV模型 Django的MTV分别代表: Model(模型):和数据库相关的,负 ...

  7. springMVC中@RequestParam和@RequestBody的作用

    @RequestParam和@RequestBody是什么区别,估计很多人还是不太清楚, 因为一般用@ RequestParam就足够传入参数了,要说他们区别,就需要知道contentType是什么? ...

  8. 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?

    1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...

  9. idea使用破解版mybatis plugin插件失败,idea打不开的解决方案

    记一次错误解决方案 打开 idea.vmoptions (Help -> Edit Custom VM Options...) ,在这里进行了修改 加了破解jar包的路径,但是之前的路径中有中文 ...

  10. vue 響應接口

    全局方式: 增加屬性和set()和get(): vue.set(targname,key,vaule) targname:對象名或者數組名 key:字符串 value:任何值 刪除屬性和set()和g ...