这道题大致题意是给定\(n\)个十进制整数和一个进制数\(k\),可以用无数多个给定的十进制整数,问这些十进制整数的和在模k意义下有多少种不同的结果(\(k\)进制下整数的最后一位就是这个数模\(k\)的余数)。

这明显是个数学题(但是不会做又有什么办法[逃]),既然是求模k意义下的可能结果,我们可以让所有数对k取模,这样可以得到末位数字。但是对于蒟蒻来说这有什么用呢(反正本蒟蒻取模之后也还是看不出来)。其实这道题并不是要取模,也不是要用进制,而是在十进制下求最大公约数(下面详细解释)。

众所周知有一道(毒瘤)题叫做小凯的疑惑,这道题的结论是对于互质的两个数\(a\)和\(b\),所有大于\(a \times b-a-b\)的数都可以用若干个\(a,b\)相加得到(别问我为什么看见这题想到了这个结论)\(\color{#FFF}{因为它太毒瘤啦qwq}\)。

看到这里蒟蒻一定会问,为什么这道题会和最大公约数有关呢?因为\(exgcd\)告诉我们二元一次方程\(ax+by=c\)在\(c\neq 0\ \ (mod \ \ gcd(x,y))\)时无整数解,这个非常简单,因为\(x=y= 0\ \ (mod \ \ gcd(x,y))\),所以\(c=0 \times a+0 \times b=0(mod\ \ gcd(x,y))\),那么设给定的\(n\)个数的最大公约数\(gcd({a_1},{a_2}, \cdots,{a_n} )=g\),则用给定的\(n\)个数的任意和都是\(g\)的倍数。既然所有\(g\)的倍数都可以构造,那么在模\(k\)意义下有多少个不同的数呢?此时就有一个二元一次方程\(ag=bk+r(0 \leq r <k)\),答案个数也即\(r\)的可能取值个数,变形可得\(ag-bk=r\),由\(exgcd\)得,当且仅当\(r = 0(mod\ gcd(g,k))\)时,方程有整数解。至此我们可以得到,对于任意的\(ans \in [0,k)\)满足\(ans \equiv 0 (mod\ gcd({a_1},{a_2},\cdots ,{a_n},k))\)都可以由若干个\({a_1},{a_2},\cdots,{a_n}\)相加得到(在模\(k\)意义下)。

以上是本题的思路叙述,下面放上\(AC\)代码\(\downarrow \downarrow \downarrow\)

#include<cstdio>//CF1010C
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<string>
#include<cmath>
#include<algorithm>
#define N 100010 using namespace std; int n,k,a[N],gg,ans; int gcd(int a,int b){
if(b==0){
return a;
}
return gcd(b,a%b);
} int main(){
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
gg=a[1];
for(int i=2;i<=n;i++){
if(gg==1){
break;
}
if(a[i]>gg){
gg=gcd(a[i],gg);
}
else{
gg=gcd(gg,a[i]);
}
}
if(gg>k){
gg=gcd(gg,k);
}
else{
gg=gcd(k,gg);
}
ans=k/gg;
printf("%d\n",ans);
for(int i=0;i<ans;i++){
printf("%d ",i*gg);
}
return 0;
}

\(p.s.\)有一点小的细节,就是在\(gcd\)已经等于$ 1 $的时候跳出循环,这样能跑的更快一点(其实也快不到哪里去...本来跑的就不慢[逃])

Codeforces | CF1010C 【Border】的更多相关文章

  1. CodeForces 382C【模拟】

    活生生打成了大模拟... #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef unsig ...

  2. Codeforces 479【E】div3

    题目链接:http://codeforces.com/problemset/problem/977/E 题意:就是给你相连边,让你求图内有几个环. 题解:我图论很差,一般都不太会做图论的题.QAQ看官 ...

  3. Codeforces 479【F】div3

    题目链接:http://codeforces.com/problemset/problem/977/F 题意:给你一串数字序列,让你求最长上升子序列,但是这个子序列呢,它的数字得逐渐连续挨着. 题解: ...

  4. Codeforces 479【D】div3

    题目链接:http://codeforces.com/problemset/problem/977/D 题意:给你一个数字序列,定了一个游戏规则.你可以对当前数字进行两个操作 1./ 3  如果这个数 ...

  5. Codeforces 479【C】div3

    题目链接:http://codeforces.com/problemset/problem/977/C 题意:给你n个数字,输出任意一个数字,这个数字刚好大于等于,序列里面k个数字. 题解:排个序,第 ...

  6. Codeforces 479【B】div3

    题目链接: http://codeforces.com/problemset/problem/977/B 题意:字符串,找固定长度为2的重复子串出现次数最多的. 题解:我暴力做的.暴力出奇迹. #in ...

  7. Codeforces 479【A】div3试个水

    题目链接:http://codeforces.com/problemset/problem/977/A 题意:这个题,题目就是让你根据他的规律玩嘛.末尾是0就除10,不是就-1. 题解:题解即题意. ...

  8. Codeforces | CF1033D 【Divisors】

    题目大意:给定\(n(1\leq n\leq500)\)个数\(a_1,a_2\cdots,a_n(1\leq a_i\leq2\cdot10^{18})\),每个数有\(3\sim5\)个因数,求\ ...

  9. Codeforces | CF1028C 【Rectangles】

    (这道题太简单啦...虽说我锤了一上午都没过...我能说这道题和\(CF1029C\)算是同一道题吗...) 按照时间顺序来说...\(CF1029\)在\(CF1028\)前面(而且\(CF1029 ...

随机推荐

  1. 初用Ajax

    早就有学习Ajax的想法了,但每次拿起一本Ajax的书,翻了不到百页就学不下去了,里面讲的东西实在太多了,前面讲javaScript的内容看了好 几遍都记不住,也就没心思去看后面的内容:看Ajax案例 ...

  2. JUnit的配置及使用

    一.安装插件JUnitGenertor V2.0 File->Setting->Plugins->在搜索框里输入JUintGenerator V2.0 二.导入JUnit相关jar包 ...

  3. 关于微信小程序使用canvas生成图片,内容图片跨域的问题

    最近有个项目是保存为名片(图片),让用户发送给朋友或朋友圈,找了很多方案都不适用,绞尽脑汁之后还是选了使用canvas,但是用这玩意儿生成图片最大的缺点就是,如果你的内容中有图片,并且这个图片是通过外 ...

  4. React Native之获取通讯录信息并实现类通讯录列表(ios android)

    React Native之获取通讯录信息并实现类通讯录列表(ios android) 一,需求分析 1,获取通讯录信息,筛选出通讯录里有多少好友在使用某个应用. 2,获取通讯录信息,实现类通讯录,可拨 ...

  5. C#设计模式之6:抽象工厂模式

    前面分析了简单工厂模式和工厂方法模式,接着来看一下抽象工厂模式,他与工厂方法模式有一些相似的地方,也有不同的地方. 先来看一个不用工厂方法模式实现的订购披萨的代码: 对象依赖的问题:当你直接实例化一个 ...

  6. 调整分区大小 转载--------------http://blog.csdn.net/perfectzq/article/details/73606119

    centos7重新调整分区大小 centos 7 调整 root 和 home 的容量大小 查看磁盘的空间大小: df -h  备份/home : cp -r /home/ homebak/ 卸载​  ...

  7. Angular 自定义过滤器

    <!DOCTYPE html><html ng-app="myApp"><head lang="en"> <meta ...

  8. vs2012密钥

    Microsoft Visual Studio Ultimate 2012 旗舰版 有效注册密钥:YKCW6-BPFPF-BT8C9-7DCTH-QXGWC:KCW6-BPFPF-BT8C9-7DCT ...

  9. MyBatis全局配置文件的各项标签3

    mapper 将sql映射注册到全局配置中,这个我们在上一章已经使用过了, resource 这个属性是用来引用类路径下的sql映射文件 url 这个属性是用来引用网络路径或磁盘路径下的sql映射文件 ...

  10. python之tips(三)--为什么Python有相同的不可变对象id不同?

    参考 : https://www.jianshu.com/p/0f6f0db0ce8f