深度学习——深度神经网络(DNN)反向传播算法
深度神经网络(Deep Neural Networks,简称DNN)是深度学习的基础。
回顾监督学习的一般性问题。假设我们有$m$个训练样本$\{(x_1, y_1), (x_2, y_2), …, (x_m, y_m)\}$,其中$x$为输入向量,$y$为输出向量,利用这个训练样本训练模型的参数,使得给定模型一个$x_{test}$,其能够预测$y_{test}$。
采用CNN模型的时候,$x$输入向量全部喂给输入层,$y$输出向量和输出层的向量一起计算损失函数,而其中若干个神经元的隐藏层,每一个隐藏层都有对应的权重矩阵$W$和偏置向量$b$,对于训练过程中,喂入样本$x$得到$y_{predict}$,根据$y_{predict}$以及$y$计算出的损失函数,怎么去更新网络中的参数,即需要反向传播算法。在机器学习中,求出损失函数的最小极值,其对应的参数即为我们所期望的到的。在DNN中,常用的优化极值求解过程的方法为梯度下降法,其他还有牛顿法、拟牛顿法等等。
综上,对DNN的损失函数采用梯度下降法进行迭代优化求极小值的过程即为反向传播算法。
1 - DNN反向传播算法
定义一个损失函数,度量训练样本通过模型的预测输出与真实输出之间的差距(损失)。训练样本的预测输出可以通过一系列对于第l层的一般公式${a^{l}}=\sigma(z^{l})=\sigma(W^{l}a^{l-1}+b^{l})$计算得出。输出层对应的${a^{L_{output}}}$即为模型预测的输出。
DNN常用可选择均方差来作为损失函数,其公式如下$$J(W,b,x,y)=\frac{1}{2}\begin{Vmatrix}a^{L}-y \end{Vmatrix}^2_2$$
其中$a^L$和$y$分别为预测输出和期望真实输出(期望输出),而$\begin{Vmatrix}S\end{Vmatrix}_2$为$S$的$L2$范数。
对于输出层$L_{output}$,其$W_{output}$和$b_{output}$满足如下公式:$${a^{L_{output}}}=\sigma(z^{L_{output}})=\sigma(W^{L_{output}}a^{L_{output\_prev}}+b^{L_{output}})$$
因此,对于输出层的参数,我们有损失函数如下:
$$J(W,b,x,y)=\frac{1}{2}\begin{Vmatrix}a^{L_{output}}-y\end{Vmatrix}^2_2=\frac{1}{2}\begin{Vmatrix} \sigma(W^{L_{output}}a^{L_{output\_prev}}+b^{L_{output}})-y\end{Vmatrix}^2_2$$
因此对于该损失函数,可对其对于输出层的$W_{output}$和$b_{output}$分别求偏导数从而得到梯度,如下:
$$\frac{\partial J(W,b,x,y)}{\partial W^{L_{output}}}=\frac{\partial J(W,b,x,y)}{\partial z^{L_{output}}}\frac{\partial z^{L_{output}}}{\partial W^{L_{output}}}=(a^{L_{output}}-y)\bigodot \sigma^{'}(z^{L_{output}})(a^{L_{output\_prev}})^T$$
$$\frac{\partial J(W,b,x,y)}{\partial b^{L_{output}}}=\frac{\partial J(W,b,x,y)}{\partial z^{L_{output}}}\frac{\partial z^{L_{output}}}{\partial b^{L_{output}}}=(a^{L_{output}}-y)\bigodot \sigma^{'}(z^{L_{output}})$$
上述$\bigodot$代表$Hadamard$积,对于两个维度相同的向量$A(a_1,a_2,...,a_n)^T$和$B(b_1,b_2,...,b_n)^T$,有${A}\bigodot{B}=(a_1b_1,a_2b_2,...,a_n,b_n)^T$。
对于$W_{output}$和$b_{output}$,有公共部分$\frac{\partial J(W,b,x,y)}{\partial z^{L_{output}}}$,将其记做$\delta^L$,如下:
$$\delta^L=\frac{\partial J(W,b,x,y)}{\partial z^{L_{output}}}=(a^{L_{output}}-y)\bigodot \sigma^{'}(z^{L_{output}})$$
以上就是计算输出层的梯度,而对于第l层的梯度,根据链式法则可得公式如下:
$$\delta^l=\frac{\partial J(W,b,x,y)}{\partial z^{l}}=\frac{\partial J(W,b,x,y)}{\partial z^{L_{output}}}\frac{\partial z^{L_{output}}}{\partial z^{L-1}}\frac{\partial z^{L-1}}{\partial z^{L-2}}...\frac{\partial z^{l+1}}{\partial z^{l}}$$
注意到,其中$L_{output}$等价于$L$。这对于任意第l层,计算出该层的$W^l$和$b^l$的梯度如下:
$$\frac{\partial J(W,b,x,y)}{\partial W^{l}}=\frac{\partial J(W,b,x,y)}{\partial z^{l}}\frac{\partial z^{l}}{\partial W^{l}}=\delta^l(a^{l-1})^T $$
$$\frac{\partial J(W,b,x,y)}{\partial b^{l}}=\frac{\partial J(W,b,x,y)}{\partial z^{l}}\frac{\partial z^{l}}{\partial b^{l}}=\delta^l $$
因此,关键是需要求出$\delta^l$。注意到有递推公式$\delta^l=\frac{\partial J(W,b,x,y)}{\partial z^l}=\frac{\partial J(W,b,x,y)}{\partial z^{l+l}}\frac{z^{l+1}}{z^l}=\delta^{l+1}\frac{\partial z^{l+1}}{\partial z^l}$,所以关键在于求解$\frac{\partial z^{l+1}}{\partial z^l}$。而$z^{l+1}$和$z^l$的关系可以表示为$z^{l+1}=W^{l+1}a^l+b^{l+1}=W^{l+1}\sigma(z^l)+b^{l+1}$,可以得出如下关系:
$$\frac{\partial z^{l+1}}{\partial z^l}=(W^{l+1})^T\bigodot\begin{matrix}\underbrace{(\sigma^{'}(z^l),...,\sigma^{'}(z^l))}\\ n={l+1}\end{matrix}$$
代入上式可以得到:
$$\delta^l=\delta^{l+1}\frac{\partial z^{l+1}}{\partial z^l}=(W^{l+1})^T\delta^{l+1}\bigodot\sigma^{'}(z^{l})$$
综上,可以通过$\delta^l$求出对应l层的$W^l$和$b^l$的梯度。
2 - DNN反向传播伪代码
initialize all variables by random value
for loop from to num_epoch
choose x_i as the model input
compute the output of the output-layer a^L
compute the δ^L of the output-layer
for l=L to
compute the δ^l based on δ^(l+) and W^(l+) and z^l
compute the gradient of W^l and b^l
update the W^l and b^l in lth-layer:W^l = W^l-αsum(δ^l(a^(l-)^T), b^l=b^l-αsum(δ^l)
3 - 参考资料
https://www.cnblogs.com/pinard/p/6422831.html
深度学习——深度神经网络(DNN)反向传播算法的更多相关文章
- 神经网络之反向传播算法(BP)公式推导(超详细)
反向传播算法详细推导 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见 ...
- 卷积神经网络(CNN)反向传播算法
在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...
- (3)Deep Learning之神经网络和反向传播算法
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定 ...
- 神经网络(NN)+反向传播算法(Backpropagation/BP)+交叉熵+softmax原理分析
神经网络如何利用反向传播算法进行参数更新,加入交叉熵和softmax又会如何变化? 其中的数学原理分析:请点击这里.
- 深度学习之神经网络核心原理与算法-caffe&keras框架图片分类
之前我们在使用cnn做图片分类的时候使用了CIFAR-10数据集 其他框架对于CIFAR-10的图片分类是怎么做的 来与TensorFlow做对比. Caffe Keras 安装 官方安装文档: ht ...
- 深度学习实战-----0001(移植反向传播Python to c++)
1. https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/ 老外教程 2. https://github. ...
- 深度神经网络(DNN)反向传播算法(BP)
在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...
- 深度学习之反向传播算法(BP)代码实现
反向传播算法实战 本文仅仅是反向传播算法的实现,不涉及公式推导,如果对反向传播算法公式推导不熟悉,强烈建议查看另一篇文章神经网络之反向传播算法(BP)公式推导(超详细) 我们将实现一个 4 层的全连接 ...
- 深度学习课程笔记(三)Backpropagation 反向传播算法
深度学习课程笔记(三)Backpropagation 反向传播算法 2017.10.06 材料来自:http://speech.ee.ntu.edu.tw/~tlkagk/courses_MLDS1 ...
随机推荐
- hdu 2973"YAPTCHA"(威尔逊定理)
传送门 题意: 给出自然数 n,计算出 Sn 的值,其中 [ x ]表示不大于 x 的最大整数. 题解: 根据威尔逊定理,如果 p 为素数,那么 (p-1)! ≡ -1(mod p),即 (p-1)! ...
- Good Bye 2018 A. New Year and the Christmas Ornament
传送门 https://www.cnblogs.com/violet-acmer/p/10201535.html 题解: 这题没什么好说的,读懂题意就会了. 比赛代码: #include<ios ...
- Mysql查询数据库 整理
一. 查询数据: 查询所有列:SELECT * FROM student; 查询指定列:SELECT id,NAME,gender FROM student; 格式:select字段名, ...
- 2017-12-18python全栈9期第三天第一节之昨天内容回顾与作业讲解用户三次机会再试试
#!/user/bin/python# -*- coding:utf-8 -*-username = "zd"password = "123"i = 3whil ...
- Hadoop生产环境配置文件
前提: ①已经搭建好zk ②已经安装好JDK 正文开始: 首先从官网下载hadoop 2.7.3 (虽然官网3.0都出了.但是目前还没经过完全的测试..待测试后...) 一.hadoop-env.sh ...
- 01--STL算法(算法基础)
一:算法概述 算法部分主要由头文件<algorithm>,<numeric>和<functional>组成. <algorithm>是所有STL头文件中 ...
- python 字符串 切片
####################概念######################''' int 整数 str 字符串 一般不存放大量的数据 bool 布尔值,用来判断. True,False ...
- [JVM-2]常用JVM命令参数
(1)-Xms20M 表示设置JVM堆内存的最小值为20M,必须以M为单位 (2)-Xmx20M 表示设置JVM堆内存的最大值为20M,必须以M为单位.将-Xmx和-Xms设置为一样可以避免JVM内存 ...
- shiro默认登录
业务需要,A项目跳转到B项目进行相关操作.而B项目使用的是shiro登录验证,懵逼了半天,好吧我很菜. 当然你也可以在shiro配置文件中放过这些方法,但是为了安全考虑需要遵守这些规则. 因此A跳转到 ...
- Cannot make a static reference to the non-static
public class SeckillServiceImpl implements SeckillService{ private SeckillDao seckillDao; private Su ...