Codeforces 865C Gotta Go Fast 二分 + 期望dp (看题解)
第一次看到这种骚东西, 期望还能二分的啊???
因为存在重置的操作, 所以我们再dp的过程中有环存在。
为了消除环的影响, 我们二分dp[ 0 ][ 0 ]的值, 与通过dp得出的dp[ 0 ][ 0 ]的值进行比较。
这样看着好像很不合理, 但实际上比较这两个值, 你能推倒出当前二分的值合不合法。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = ;
const double eps = 1e-;
const double PI = acos(-); int n, R, F[N], S[N], up;
double P[N];
double dp[ + ][ * + ]; double dfs(int i, int j, double x) {
if(i == n) {
if(j <= R) return ;
else return x;
}
if(dp[i][j] + eps > ) return dp[i][j];
double T1 = P[i + ] * (dfs(i + , j + F[i + ], x) + F[i + ]) + ( - P[i + ]) * (dfs(i + , j + S[i + ], x) + S[i + ]);
dp[i][j] = min(T1, x);
return dp[i][j];
} bool check(double x) {
for(int i = ; i <= n; i++)
for(int j = ; j <= up; j++)
dp[i][j] = -;
if(dfs(, , x) < x) return true;
else return false;
}
int main() {
scanf("%d%d", &n, &R);
for(int i = ; i <= n; i++) {
scanf("%d%d%lf", &F[i], &S[i], &P[i]);
P[i] /= ;
up += S[i];
}
double low = n, high = 5e8;
for(int o = ; o <= ; o++) {
double mid = (low + high) / ;
if(check(mid)) high = mid;
else low = mid;
}
printf("%.12f\n", (low + high) / );
return ;
} /*
*/
Codeforces 865C Gotta Go Fast 二分 + 期望dp (看题解)的更多相关文章
- 【CF865C】Gotta Go Fast 二分+期望DP
[CF865C]Gotta Go Fast 题意:有n个关卡需要依次通过,第i关有pi的概率要花ai时间通过,有1-pi的概率要花bi时间通过,你的目标是花费不超过m的时间通关,每一关开始时你都可以选 ...
- [Codeforces 865C]Gotta Go Fast(期望dp+二分答案)
[Codeforces 865C]Gotta Go Fast(期望dp+二分答案) 题面 一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每 ...
- #3 Codeforces-865C Gotta Go Fast(期望dp)
题意:一个游戏一共有n个关卡,对于第i关,用a[i]时间通过的概率为p[i],用b[i]通过的时间为1-p[i],每通过一关后可以选择继续下一关或者时间清0并从第一关开始,先要求通过所有关卡的时间和不 ...
- Codeforces 750E New Year and Old Subsequence 线段树 + dp (看题解)
New Year and Old Subsequence 第一感觉是离线之后分治求dp, 但是感觉如果要把左边的dp值和右边的dp值合起来, 感觉很麻烦而且时间复杂度不怎么对.. 然后就gun取看题解 ...
- Codeforces 866C Gotta Go Fast - 动态规划 - 概率与期望 - 二分答案
You're trying to set the record on your favorite video game. The game consists of N levels, which mu ...
- Codeforces 830A. Office Keys (贪心二分 or DP)
原题链接:http://codeforces.com/contest/830/problem/A 题意:在一条数轴上分别有n个人和k把钥匙(n<=k),以及一个目的地,每个人要各自拿到一个钥匙后 ...
- Codeforces Round #548 (Div. 2) D 期望dp + 莫比乌斯反演
https://codeforces.com/contest/1139/problem/D 题意 每次从1,m中选一个数加入队列,假如队列的gcd==1停止,问队列长度的期望 题解 概率正着推,期望反 ...
- codeforces 352D - Jeff and Furik【期望dp】
首先恋人操作过一轮之后逆序对不会变多,所以设f[i]为把i个逆序对消掉的期望次数,f[i]=0.5f[i-2]+0.5f[i]+2,化简然后递推即可 #include<iostream> ...
- Codeforces 1101F Trucks and Cities dp (看题解)
Trucks and Cities 一个很显然的做法就是二分然后对于每个车贪心取check, 这肯定会TLE, 感觉会给人一种贪心去写的误导... 感觉有这个误导之后很难往dp那个方向靠.. dp[ ...
随机推荐
- 简单的三级联动demo
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- MSSQL—行转列
行转列,是SQL中经常会遇到的一个问题,并且分为静态转换和动态转换,所谓静态转换即在转换的行数已知或固定:动态转换则为转换的行数不固定. 转换的方法一般采用case when语句或pivot(MSSQ ...
- encoding and Endian
Unicode, Code Point is the value of evry character in Unicode table(int,long,ll) Unicode defines a c ...
- HBase Snapshot简介
一.简介 HBase 从0.95开始引入了Snapshot,可以对table进行Snapshot,也可以Restore到Snapshot.Snapshot可以在线做,也可以离线做.Snapshot的实 ...
- git命令(版本控制之道读书笔记)
1.在Windows中安装完git后,需要进行一下配置:$ git config --global user.name "zhangliang"$ git config --glo ...
- Laravel 怎么使用资源控制器delete方法
### 在视图上,想删除某个数据,而控制器是使用了resources controller的 那么在删除数据的时候,还是有些需要注意的地方 ### 视图上: <a href="java ...
- js对数组中的数字排序
1 前言 如果数组里面都是数字,如果用原生的sort,默认是按字符串排序的,不符合我们的要求 2 代码 方法1:添加Array的原生方法 Array.prototype.sort2 =function ...
- Java红黑树详谈
定义 红黑树的主要是想对2-3查找树进行编码,尤其是对2-3查找树中的3-nodes节点添加额外的信息.红黑树中将节点之间的链接分为两种不同类型,红色链接,他用来链接两个2-nodes节点来表示一个3 ...
- gulp.基础
1.安装 全局安装 npm install --global gulp 作为项目的开发依赖安装 npm install gulp --save-dev 2.在根目录下创建一个名为gulpfile.js ...
- 开发了5年android,我开始了go学习之旅
前言 做了近5年的android开发,最近项目也是不怎么忙,空闲的时候总会思考一些事情,不过作为移动开发,我个人觉得很有必要学习后台开发,由于公司是Go语言开发的,了解go语言一段时间后,我发现go语 ...