数字图像的随机噪声在图像处理中有着重要的位置,今天用到了,就回顾一下。做个总结。

  随机噪声很多种,最常用的一般有两种,高斯噪声和椒盐噪声,下面我们就针对这两种噪声做个科普。

高斯噪声:高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声与椒盐噪声相似(Salt And Pepper Noise),高斯噪声(gauss noise)也是数字图像的一个常见噪声。椒盐噪声是出现在随机位置、噪点深度基本固定的噪声,高斯噪声与其相反,是几乎每个点上都出现噪声、噪点深度随机的噪声。

正如上面的简介我们只要实现一个随机矩阵,矩阵中值总体来说符合高斯分布,与原图像想加,就可以实现高斯噪声了,python中的random提供了产生高斯随机数的方法,但是numpy提供了直接生成随机高斯矩阵的方法。

我们这里使用numpy即可

gauss = np.random.normal(mean,sigma,(row,col,ch))
因此我们可以得出产生高斯噪声的方式 def GaussieNoisy(image,sigma):
row,col,ch= image.shape
mean = 0
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy.astype(np.uint8)

  图像结果:

  

椒盐噪声:相比高斯噪声,椒盐噪声的概念非常简单,即在图像中随机选点,使其为0或255。

实现代码:

def spNoisy(image,s_vs_p = 0.5,amount = 0.004):
row,col,ch = image.shape out = np.copy(image)
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
out[coords] = 1
num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
out[coords] = 0
return out

  图片效果:

    总体代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
import scipy
import scipy.stats def GaussieNoisy(image,sigma):
row,col,ch= image.shape
mean = 0
gauss = np.random.normal(mean,sigma,(row,col,ch))
gauss = gauss.reshape(row,col,ch)
noisy = image + gauss
return noisy.astype(np.uint8) def spNoisy(image,s_vs_p = 0.5,amount = 0.004):
row,col,ch = image.shape out = np.copy(image)
num_salt = np.ceil(amount * image.size * s_vs_p)
coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape]
out[coords] = 1
#num_pepper = np.ceil(amount * image.size * (2. - s_vs_p))
num_pepper = np.ceil(amount * image.size * (1 - 0.5))
coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape]
out[coords] = 0
return out apple = cv2.imread("girl8.jpg")
apple = cv2.resize(cv2.cvtColor(apple,cv2.COLOR_BGR2RGB),(400,800))
#plt.imshow(apple)
plt.imshow(GaussieNoisy(apple,25))
#plt.imshow(spNoisy(apple,25))
plt.savefig('girl_gs.jpg')
plt.axis("off")
plt.show()

  参考文档:

1 https://www.cnblogs.com/lynsyklate/p/8047510.html

python数字图像处理---噪声的应用的更多相关文章

  1. python数字图像处理(17):边缘与轮廓

    在前面的python数字图像处理(10):图像简单滤波 中,我们已经讲解了很多算子用来检测边缘,其中用得最多的canny算子边缘检测. 本篇我们讲解一些其它方法来检测轮廓. 1.查找轮廓(find_c ...

  2. 「转」python数字图像处理(18):高级形态学处理

    python数字图像处理(18):高级形态学处理   形态学处理,除了最基本的膨胀.腐蚀.开/闭运算.黑/白帽处理外,还有一些更高级的运用,如凸包,连通区域标记,删除小块区域等. 1.凸包 凸包是指一 ...

  3. python数字图像处理(1):环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  4. 初始----python数字图像处理--:环境安装与配置

    一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因 ...

  5. python数字图像处理(二)关键镜头检测

    镜头边界检测技术简述 介绍 作为视频最基本的单元帧(Frame),它的本质其实就是图片,一系列帧通过某种顺序组成在一起就构成了视频.镜头边界是视频相邻两帧出现了某种意义的变化,即镜头边界反映了视频内容 ...

  6. python数字图像处理(五) 图像的退化和复原

    import cv2 import numpy as np import matplotlib.pyplot as plt import scipy import scipy.stats %matpl ...

  7. python数字图像处理(三)边缘检测常用算子

    在该文将介绍基本的几种应用于边缘检测的滤波器,首先我们读入saber用来做为示例的图像 #读入图像代码,在此之前应当引入必要的opencv matplotlib numpy saber = cv2.i ...

  8. python数字图像处理(19):骨架提取与分水岭算法

    骨架提取与分水岭算法也属于形态学处理范畴,都放在morphology子模块内. 1.骨架提取 骨架提取,也叫二值图像细化.这种算法能将一个连通区域细化成一个像素的宽度,用于特征提取和目标拓扑表示. m ...

  9. python数字图像处理(10):图像简单滤波

    对图像进行滤波,可以有两种效果:一种是平滑滤波,用来抑制噪声:另一种是微分算子,可以用来检测边缘和特征提取. skimage库中通过filters模块进行滤波操作. 1.sobel算子 sobel算子 ...

随机推荐

  1. 现代编译原理——第二章:语法分析之LL(K)

    转自: http://www.cnblogs.com/BlackWalnut/p/4472122.html LL(K)语法分析技术是建立在预测分析的技术之上的.我们先来了解预测分析技术.考虑以下文法: ...

  2. Shell脚本- 单条命令循环执行重复工作

    关于shell for循环具体详细说明可参考:http://wiki.jikexueyuan.com/project/linux-command/chap34.html example: 分别在com ...

  3. .net webapi 接收 xml 格式数据的三种情况

    webapi 接收 xml 的三种方法 前段时间接到一个任务写一个小接口,要接收java端返回过来的短信xml数据. 刚拿到项目,我的第一想法是对方会以什么形式发送xml格式的数据给我呢,设想三种情况 ...

  4. Python3 单下划线_双下划线__开头

    Python 中,下划线对解释器有特殊的含义,而且是内建标识符所使用的符号,使用时要多加留意. 在 Python3 的面向对象中,双下划线开头的变量和方法表名为私有变量和私有方法. __private ...

  5. godoc

    Godoc-一个Go代码文档化工具 Python - Docstring Java - javadoc

  6. Python3创建项目时创建了一个叫做“keyword"的包,运行项目时报ImportError: cannot import name 'iskeyword'错误

    导致该问题的原因为在Python3中keyword是python的关键字包,所以在给包命名时应避免使用关键字进行命名.解决方法,将keword包名称修改为'keywords'就可以了.

  7. int main(int argc, char** argv) 以及CommandLineParser

    参考链接: 关于int main(int argc, char** argv) http://blog.csdn.net/liuhuiyi/article/details/8239303 http:/ ...

  8. javafx安装

    可在官网http://efxclipse.bestsolution.at/ 下载 其中http://efxclipse.bestsolution.at/install.html#all-in-one ...

  9. 一个jar包冲突引起的StackOverflowError

    项目运行中错误信息:java.lang.IllegalStateException: Unable to complete the scan for annotations for web appli ...

  10. Python 知识小tips

    python进制转换函数: 二进制转换成十进制:v = "0b1111011"    # int(v,2) 十进制转换成二进制:v = 18                   # ...