出处:https://www.jianshu.com/p/86a1fd2d7406

写在前面,好像不同的教材对b树,b-树的定义不一样。我就不纠结这个到底是叫b-树还是b-树了。

如图所示,区别有以下两点:

  1. B+树中只有叶子节点会带有指向记录的指针,而B树则所有节点都带有,在内部节点出现的索引项不会再出现在叶子节点中。
  2. B+树中所有叶子节点都是通过指针连接在一起,而B树不会。

B+树的优点:

  1. 非叶子节点不会带上指向记录的指针,这样,一个块中可以容纳更多的索引项,一是可以降低树的高度。二是一个内部节点可以定位更多的叶子节点。
  2. 叶子节点之间通过指针来连接,范围扫描将十分简单,而对于B树来说,则需要在叶子节点和内部节点不停的往返移动。具体的来讲,如何想扫描一次所有数据,对于b+树来说,可以从因为他们的叶子结点是连在一起的,所以可以横向的遍历过去。而对于b-树来说,就这能中序遍历了。

B树的优点:
对于在内部节点的数据,可直接得到,不必根据叶子节点来定位。

B树长什么样子?

红黑树和B树应用场景有何不同?
为什么要设计红黑树?

  先说一下红黑树,红黑树有一个比较复杂的规则,红的结点balala怎么样,黑的结点balalal怎么样。大一大二学这些的时候,傻呵呵的想背课文一样背下来,当也不知道为什么要设计成这样。换一句话说,为什么平衡树和红黑树的区别是什么?为什么有了平衡树还要设计出来红黑树?

红黑树的规则:
1)每个结点要么是红的,要么是黑的。
2)根结点是黑的。
3)每个叶结点(叶结点即指树尾端NIL指针或NULL结点)是黑的。
4)如果一个结点是红的,那么它的俩个儿子都是黑的。
5)对于任一结点而言,其到叶结点树尾端NIL指针的每一条路径都包含相同数目的黑结点。

  现在想想,我的理解是平衡树(AVL)更平衡,结构上更加直观,时间效能针对读取而言更高,但是维护起来比较麻烦!!!(插入和删除之后,都需要rebalance)。但是,红黑树通过它规则的设定,确保了插入和删除的最坏的时间复杂度是O(log N) 。

设计红黑树的目的,就是解决平衡树的维护起来比较麻烦的问题,红黑树,读取略逊于AVL,维护强于AVL,每次插入和删除的平均旋转次数应该是远小于平衡树。

小结一下:

能用平衡树的地方,就可以用红黑树。用红黑树之后,读取略逊于AVL,维护强于AVL。

红黑树 和 b+树的用途有什么区别?
  1. 红黑树多用在内部排序,即全放在内存中的,STL的map和set的内部实现就是红黑树。

  2. B+树多用于外存上时,B+也被成为一个磁盘友好的数据结构。

为什么b+磁盘友好?

  1. 磁盘读写代价更低
    树的非叶子结点里面没有数据,这样索引比较小,可以放在一个blcok(或者尽可能少的blcok)里面。避免了树形结构不断的向下查找,然后磁盘不停的寻道,读数据。这样的设计,可以降低io的次数。

  2. 查询效率更加稳定
    非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

  3. 遍历所有的数据更方便
    B+树只要遍历叶子节点就可以实现整棵树的遍历,而其他的树形结构 要中序遍历才可以访问所有的数据。

题外话:为什么mysql索引使用b+树而不使用红黑树?

  b+树就是为文件存储而生的。如果数据库文件存储在主存中我认为两种结构的查询速度差距不是很大,因为主存的查找速度非常快。而数据库文件实际存储在磁盘中,定位一行信息需要查找该行文件所在柱面号,磁盘号,扇区号,页号这个阶段是很耗费时间的。每一次的定位请求意味着要做一次IO操作,也意味着成倍的时间消耗。因此减少IO查询的次数是提高查询性能的关键。而IO的查询次数就是索引树的高度,高度越低查询的次数越少。同样的结点次数红黑树的高度最多为2log(n+1),而B+树的高度最多为(logt (n+1)/2)+1,随着t增大高度会更小,IO次数也会减少。

对B+树,B树,红黑树的理解的更多相关文章

  1. 1.红黑树和自平衡二叉(查找)树区别 2.红黑树与B树的区别

    1.红黑树和自平衡二叉(查找)树区别 1.红黑树放弃了追求完全平衡,追求大致平衡,在与平衡二叉树的时间复杂度相差不大的情况下,保证每次插入最多只需要三次旋转就能达到平衡,实现起来也更为简单. 2.平衡 ...

  2. 数据结构和算法(Golang实现)(29)查找算法-2-3树和左倾红黑树

    某些教程不区分普通红黑树和左倾红黑树的区别,直接将左倾红黑树拿来教学,并且称其为红黑树,因为左倾红黑树与普通的红黑树相比,实现起来较为简单,容易教学.在这里,我们区分开左倾红黑树和普通红黑树. 红黑树 ...

  3. 从二叉查找树到平衡树:avl, 2-3树,左倾红黑树(含实现代码),传统红黑树

    参考:自平衡二叉查找树 ,红黑树, 算法:理解红黑树 (英文pdf:红黑树) 目录 自平衡二叉树介绍 avl树 2-3树 LLRBT(Left-leaning red-black tree左倾红黑树 ...

  4. 对于AVL树和红黑树的理解

    AVL又称(严格)高度平衡的二叉搜索树,也叫二叉查找树.平衡二叉树.window对进程地址空间的管理用到了AVL树. 红黑树是非严格平衡二叉树,统计性能要好于平衡二叉树.广泛的在C++的STL中,ma ...

  5. 从二叉搜索树到AVL树再到红黑树 B树

    这几种树都属于数据结构中较为复杂的,在平时面试中,经常会问理解用法,但一般不会问具体的实现,所以今天来梳理一下这几种树之间的区别与联系,感谢知乎用户@Cailiang,这篇文章参考了他的专栏. 二叉查 ...

  6. 简述树,Trie,Avl,红黑树

    树的表示方法 在平时工作中通常有2种方式来表示树状结构,分别是孩子链表示法和父节点表示法.光说名词可能无法让人联系到实际场景中,但是写出代码之后大家一定就明白了. 孩子链表示法,即将树中的每个结点的孩 ...

  7. 红黑树、B(+)树、跳表、AVL等数据结构,应用场景及分析,以及一些英文缩写

    在网上学习了一些材料. 这一篇:https://www.zhihu.com/question/30527705 AVL树:最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间 ...

  8. 大名鼎鼎的红黑树,你get了么?2-3树 绝对平衡 右旋转 左旋转 颜色反转

    前言 11.1新的一月加油!这个购物狂欢的季节,一看,已囊中羞涩!赶紧来恶补一下红黑树和2-3树吧!红黑树真的算是大名鼎鼎了吧?即使你不了解它,但一定听过吧?下面跟随我来揭开神秘的面纱吧! 一.2-3 ...

  9. 红黑树与AVL树

    概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树 ...

随机推荐

  1. https 建立连接过程

    http://blog.csdn.net/wangjun5159/article/details/51510594 思考问题的顺序 学技术时,总是会问什么?这里也不例外,https为什么会存在,它有什 ...

  2. Linux三剑客-SED

    1.Sed是什么 Sed:字符流编辑器,Stream Editor 2.Sed功能与版本 处理日志文件,日志,配置文件等 增加.删除.修改.查询 sed --version 可以通过man sed 来 ...

  3. 对tomcat7模拟并发请求及相关配置参数的含义

    这里的并不是真正的并发请求,因为for循环是间隔10毫秒,并且线程初始化也需要时间的,到真正执行http请求的时刻是不确定的.  tomcat 的运行状态可以在webapps下的manage项目查看, ...

  4. 匆忙记录 编译linux kernel zImage

    arm的板子. 自己要定制下内核. 下载源码 cp 模板配置 .config make menuconfig 进行定制化 之后make zImage {注意 交叉编译 gcc 也要配置的} 之后 ./ ...

  5. linux中启动 java -jar 运行程序

    每天学习一点点 编程PDF电子书.视频教程免费下载:http://www.shitanlife.com/code 直接用java -jar xxx.jar,当退出或关闭shell时,程序就会停止掉.以 ...

  6. 【转】OS X Base System 上没有足够的空间来进行安装

    今天在windows环境下安装IOS虚拟机,安装过程中报了一个错:“OS X Base System ”上没有足够的空间来进行安装.如图: 之后的解决办法是:点击上方的[实用工具]->[磁盘工具 ...

  7. PHP删除数组中空值的方法介绍

    这篇文章主要介绍了PHP删除数组中空值的方法介绍,需要的朋友可以参考下 说来惭愧,以前在去掉数组的空值是都是强写foreach或者while的,利用这两个语法结构来删除数组中的空元素,简单代码如下: ...

  8. 8.oop-多态

    一.继承1.定义:子类继承父类,会继承父类的属性和方法2.语法:extends关键字 子类 extends 父类3.特点:java中的继承是单一继承,子类只能继承一个父类,但是父类可以有多个子类4.用 ...

  9. app前端代码打包步骤

    一.搭建项目环境 1.安装node.js 在网上找到nodejs压缩包,下载解压后安装node-v8.9.3-x64.msi文件. 安装完毕后,在windows的cmd控制台输入node -v或nod ...

  10. (二 -3-3) 天猫精灵接入Home Assistant-自动发现Mqtt设备-自动生成配置信息

    http://www.hassmart.com/products/switches/#tab=config switch: - platform: mqtt name: keting state_to ...