「SCOI2016」妖怪

玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水

首先要最小化

\[\max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i
\]

\(k\)是大于0的正实数

最大值显然在上凸包上,先把上凸包搞出来

然后每个点成为最大值时,\(k\)都有个取值范围(就是它左边或者右边的点成为最大值时)

然后对每个点用均值不等式得到最小值为

\[\begin{aligned}
z&=kx+\frac{1}{k}y+x+y\\
&\ge2\sqrt{xy}+x+y\\
\end{aligned}
\]

在\(kx=\frac{y}{k}\)取到最小值,即\(k=\sqrt{\frac{y}{x}}\)

然后这个点成为最大值时,可能取到最小值的就两个端点和这个最小值点(如果这个最小值可以取的话)

最开始我没注意可以不等式,随便取了个\(k=\frac{y}{x}\),居然也过了,真神奇


Code:

#include <cstdio>
#include <cmath>
#include <algorithm>
using std::min;
const int N=1e6+10;
const double eps=1e-8;
struct Vector
{
double x,y;
Vector(){}
Vector(double X,double Y){x=X,y=Y;}
Vector friend operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
bool friend operator <(Vector a,Vector b){return fabs(a.x-b.x)<eps?a.y>b.y:a.x<b.x;}
}bee[N],s[N];
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
int n,tot;
double get(Vector a,Vector b)
{
double k=(b.y-a.y)/(b.x-a.x);
if(fabs(k)<eps) return -eps;
if(1/fabs(k)<eps) return -1/eps;
return k;
}
double cal(double k,Vector a)
{
if(k<eps) return 1e18;
return (1+k)*a.x+(1+1/k)*a.y;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%lf%lf",&bee[i].x,&bee[i].y);
std::sort(bee+1,bee+1+n);
bee[++n]=Vector(0,bee[1].y);
++n,bee[n]=Vector(bee[n-2].x,0);
std::sort(bee+1,bee+1+n);
for(int i=1;i<=n;i++)
{
while(tot>1&&Cross(bee[i]-s[tot],s[tot]-s[tot-1])<0) --tot;
s[++tot]=bee[i];
}
double ans=1e18;
for(int i=2;i<tot;i++)
{
double kl=-get(s[i],s[i-1]),kr=-get(s[i+1],s[i]),k=sqrt(s[i].x/s[i].y);
ans=min(ans,min(cal(kl,s[i]),cal(kr,s[i])));
if(kl<=k&&k<=kr)
ans=min(ans,cal(k,s[i]));
}
printf("%.4f\n",ans);
return 0;
}

2019.3.5

「SCOI2016」妖怪 解题报告的更多相关文章

  1. 「SCOI2016」围棋 解题报告

    「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...

  2. 「SCOI2016」美味 解题报告

    「SCOI2016」美味 状态极差无比,一个锤子题目而已 考虑每次对\(b\)和\(d\)求\(c=d \ xor \ (a+b)\)的最大值,因为异或每一位是独立的,所以我们可以尝试按位贪心. 如果 ...

  3. 「SCOI2016」萌萌哒 解题报告

    「SCOI2016」萌萌哒 这思路厉害啊.. 容易发现有个暴力是并查集 然后我想了半天线段树优化无果 然后正解是倍增优化并查集 有这个思路就简单了,就是开一个并查集代表每个开头\(i\)每个长\(2^ ...

  4. loj#2015. 「SCOI2016」妖怪 凸函数/三分

    题目链接 loj#2015. 「SCOI2016」妖怪 题解 对于每一项展开 的到\(atk+\frac{dnf}{b}a + dnf + \frac{atk}{a} b\) 令$T = \frac{ ...

  5. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  6. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  7. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  8. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  9. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

随机推荐

  1. semantic-ui 表单

    1.定义表单 先看一个基础的表单,再讲解一下: <form class="ui form" method="post" action="&quo ...

  2. Apache Tomcat® - Which Version Do I Want?

    Apache Tomcat® - Which Version Do I Want?http://tomcat.apache.org/whichversion.html

  3. Column 'parent_id' specified twice

    Hibernate Column 'parent_id' specified twice问题解决--insertable = false, updatable = false的使用 - shendeg ...

  4. Access使用记录

    iif函数 此函数类似编程语言中的双目运算符,官方解释如下: 在任何可以使用表达式的位置均可使用 IIf.您可以使用 IIf 确定另一个表达式为 True 还是 False.如果表达式为 True,则 ...

  5. Java 简单的登录验证码

    1 验证码的作用 验证码是为了区分人与机器,如果没有验证码机制,web网站或者应用会遇到很多问题,具体如下: ① 网站容易被暴力登录攻破密码,可以制作一个自动程序不断的尝试登录,密码很容易被破解,系统 ...

  6. [转帖]linux下的X server:linux图形界面原理

    linux下的X server:linux图形界面原理 https://www.cnblogs.com/liangxiaofeng/p/5034912.html linux下的X server:lin ...

  7. windows10企业版2016长期服务版激活

    win10 2016 长期服务版的ISO文件中本身就带有KMS激活KEY,不用输入任何KEY,连接网络进入CMD,只要输入:slmgr /skms kms.digiboy.irslmgr /ato这两 ...

  8. python设计模式第二十二天【备忘录模式】

    1.应用场景 (1)能保存对象的状态,并能够恢复到之前的状态 2.代码实现 #!/usr/bin/env python #! _*_ coding:UTF-8 _*_ class Originator ...

  9. QTP 自动化测试--定义变量

    1 Dim suffixsuffix=get_currentdatetxt("001")

  10. 在delphi中生成GUID/自动获取临时表名......

    什么是 GUID ? 全球唯一标识符 (GUID) 是一个字母数字标识符,用于指示产品的唯一性安装.在许多流行软件应用程序(例如 Web 浏览器和媒体播放器)中,都使用 GUID. GUID 的格式为 ...