一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串Sl1Sl1+1Sl1+2...Sr1与Sl2Sl2+1Sl2+2...Sr2完全相同。比如n=6时,某限制条件l1=1,r1=3,l2=4,r2=6,那么123123,351351均满足条件,但是12012,131141不满足条件,前者数的长度不为6,后者第二位与第五位不同。问满足以上所有条件的数有多少个。

Solution

涨姿势了。

不难想到用并查集维护数字之间的相等关系,最后用联通块个数统计答案。

但这样的复杂度是n^2的,需要去优化它,

考虑到每次合并都是两段等长的区间进行合并,所以我们考虑使用倍增。

我们开nlogn个并查集,num[i][j]表示从i开始的2^j个数,每次区间合并我们把它拆成logn个区间分别合并。

最后自顶向底合并儿子,就像线段树一样,

Code

#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
const int mod=1e9+;
int num[N][],f[N*],n,m,tot,son[N*][],l1,r1,l2,r2;
int find(int x){return f[x]=f[x]==x?x:find(f[x]);}
long long power(ll x,int y){
ll ans=;
while(y){
if(y&)(ans*=x)%=mod;
(x*=x)%=mod;
y>>=;
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;(<<i)<=n;++i)
for(int j=;j+(<<i)-<=n;++j){
num[j][i]=++tot;f[tot]=tot;
if(i){
son[tot][]=num[j][i-];
son[tot][]=num[j+(<<i-)][i-];
}
}
for(int i=;i<=m;++i){
scanf("%d%d%d%d",&l1,&r1,&l2,&r2);
int len=r1-l1+;
for(int j=;j>=;--j)
if((<<j)<=len){
int x=find(num[l1][j]),y=find(num[l2][j]);
if(x!=y)f[x]=y;
len-=(<<j);l1+=(<<j);l2+=(<<j);
}
}
for(int i=;i>=;--i)
for(int j=;j+(<<i)-<=n;++j){
int root=num[j][i];
if(find(root)!=root){
int x=find(son[root][]),y=find(son[f[root]][]);
if(x!=y)f[x]=y;
x=find(son[root][]),y=find(son[f[root]][]);
if(x!=y)f[x]=y;
}
}
int ans=;
for(int i=;i<=n;++i)if(find(num[i][])==num[i][])ans++;
printf("%lld",*power(,ans-)%mod);
return ;
}

[SCOI2016]萌萌哒(倍增+并查集)的更多相关文章

  1. 【BZOJ4569】[Scoi2016]萌萌哒 倍增+并查集

    [BZOJ4569][Scoi2016]萌萌哒 Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四 ...

  2. [BZOJ4569][SCOI2016]萌萌哒(倍增+并查集)

    首先有一个显然的$O(n^2)$暴力做法,将每个位置看成点,然后将所有限制相等的数之间用并查集合并,最后答案就是9*(10^连通块的个数).(特判n=1时就是10). 然后比较容易想到的是,由于每次合 ...

  3. 2018.07.31 bzoj4569: [Scoi2016]萌萌哒(并查集+倍增)

    传送门 对于每个限制,使用倍增的二进制拆分思想,用并查集数组fa[i][j]" role="presentation" style="position: rel ...

  4. BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】

    题目链接 BZOJ4569 题解 倍增的思想很棒 题目实际上就是每次让我们合并两个区间对应位置的数,最后的答案\(ans = 9 \times 10^{tot - 1}\),\(tot\)是联通块数, ...

  5. BZOJ4569 [Scoi2016]萌萌哒(并查集,倍增)

    类似\(ST表\)的思想,倍增\(log(n)\)地合并 你是我家的吗?不是就来呀啦啦啦.还有要来的吗?没了!那有多少个家就映射多少答案呀 倍增原来这么好玩 #include <iostream ...

  6. 洛谷P3295 萌萌哒 [SCOI2016] 倍增+并查集

    正解:倍增+并查集 解题报告: 传送门! 首先不难想到暴力?就考虑把区间相等转化成对应点对相等,然后直接对应点连边,最后求有几个连通块就好辣 然后看下复杂度,修改是O(n2)查询是O(n),就比较容易 ...

  7. 【BZOJ4569】萌萌哒(并查集,倍增)

    [BZOJ4569]萌萌哒(并查集,倍增) 题面 BZOJ 题意: 有一个长度为\(n\)的数 给定\(m\)个限制条件 每次限制\(l1-r1\)与\(l2-r2\)是相同的 求出方案数 题解 如果 ...

  8. 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)

    4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 865  Solved: 414 Description 一个长 ...

  9. 洛谷P3295 [SCOI2016]萌萌哒(倍增+并查集)

    传送门 思路太妙了啊…… 容易才怪想到暴力,把区间内的每一个数字用并查集维护相等,然后设最后总共有$k$个并查集,那么答案就是$9*10^{k-1}$(因为第一位不能为0) 考虑倍增.我们设$f[i] ...

随机推荐

  1. PHP之CLI模式

    转载: http://www.cnblogs.com/zcy_soft/archive/2011/12/10/2283437.html 所有的PHP发行版,不论是编译自源代码的版本还是预创建的版本,都 ...

  2. js原生实现div渐入渐出

    jq对渐入渐出进行封装,简单的使用连个方法就可以实现.fadeIn(),fadeOut();如果我们界面没有使用jq那么原生怎么实现呢? 我们讲解一下,这个原理.当我们要实现渐入的时候,首先是让隐藏的 ...

  3. C#设计模式之3:观察者模式

    C#中已经实现了观察者模式,那就是事件,事件封装了委托,使得委托的封装性更好,在类的内部定义事件,然后在客户端对事件进行注册: public class Subject { public event ...

  4. [转帖]linux sed命令

    linux sed命令就是这么简单 https://www.cnblogs.com/wangqiguo/p/6718512.html 用到的最多的就是一个sed -i 's/nn/mm/' 的命令了. ...

  5. vue-resources&axios

    vue-resource vue-resource是Vue.js的一款插件,它可以通过XMLHttpRequest或JSONP发起请求并处理响应. vue-resource特点: 体积小 vue-re ...

  6. CLOUD SQL跟踪

    CLOUD会自动在后台执行一些sql语句,所以追踪起来比较麻烦,需要加入一些过滤条件. 比如关键的CLIENTPROCESSID,加入后 ,就能过滤是哪个客户度执行的数据. 过滤数据.

  7. C# Note19: Windows安装包制作实践

    前言 最近在项目中需要不断更新新版本的software installer(软件安装包),于是便查阅资料,整理了下制作方法. NSIS安装包制作脚本 NSIS(Nullsoft Scriptable ...

  8. mysql修改默认端口号后从windows命令行登录

    mysql -u root -p -P 大写的P代表端口号,小写的p代表密码

  9. springmvc配置文件

    1 springMVC的配置文件路径问题 https://www.cnblogs.com/ysloong/p/6071450.html

  10. java中的a++与++a的区别

    ++a:如果++在前就会先把a+1. a++:如果++在后就会先a然后在执行++的操作.代码: int a = 1; System.out.pritln(++a); //输出2 int s = 1; ...