LOJ#6283. 数列分块入门 7
对于每个区间先乘在加,如果我修改的是部分的块,我就需要把现这个块的add和mul标记全部放下去,然后再更新。
#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define first fi
#define second se
#define lowbit(x) (x & (-x)) typedef unsigned long long int ull;
typedef long long int ll;
const double pi = 4.0*atan(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = ;
const int maxm = ;
const int mod = ;
using namespace std; int n, m, tol, T;
int block;
int a[maxn];
int add[maxn];
int mul[maxn];
int belong[maxn]; void init() {
memset(a, , sizeof a);
memset(add, , sizeof add);
memset(mul, , sizeof mul);
memset(belong, , sizeof belong);
} int L(int x) {
return (x-)*block + ;
} int R(int x) {
return min(n, x*block);
} void update1(int l, int r, int c) {
for(int i=L(belong[l]); i<=R(belong[l]); i++) {
a[i] = a[i] * mul[belong[i]] % mod + add[belong[i]];
a[i] %= mod;
}
add[belong[l]] = ;
mul[belong[l]] = ;
for(int i=l; i<=min(r, R(belong[l])); i++) {
a[i] += c;
a[i] %= mod;
}
if(belong[l] == belong[r]) return ;
if(belong[l] != belong[r]) {
for(int i=L(belong[r]); i<=R(belong[r]); i++) {
a[i] = a[i] * mul[belong[i]] % mod + add[belong[i]];
a[i] %= mod;
}
add[belong[r]] = ;
mul[belong[r]] = ;
for(int i=L(belong[r]); i<=r; i++) {
a[i] += c;
a[i] %= mod;
}
}
for(int i=belong[l]+; i<belong[r]; i++) {
add[i] += c;
add[i] %= mod;
}
} void update2(int l, int r, int c) {
for(int i=L(belong[l]); i<=R(belong[l]); i++) {
a[i] = a[i] * mul[belong[i]] % mod + add[belong[i]];
a[i] %= mod;
}
add[belong[l]] = ;
mul[belong[l]] = ;
for(int i=l; i<=min(r, R(belong[l])); i++) {
a[i] *= c;
a[i] %= mod;
}
if(belong[l] == belong[r]) return ;
if(belong[l] != belong[r]) {
for(int i=L(belong[r]); i<=R(belong[r]); i++) {
a[i] = a[i] * mul[belong[i]] % mod + add[belong[i]];
a[i] %= mod;
}
add[belong[r]] = ;
mul[belong[r]] = ;
for(int i=L(belong[r]); i<=r; i++) {
a[i] *= c;
a[i] %= mod;
}
}
for(int i=belong[l]+; i<belong[r]; i++) {
add[i] *= c;
mul[i] *= c;
add[i] %= mod;
mul[i] %= mod;
}
} int main() {
while(~scanf("%d", &n)) {
init();
block = sqrt(n);
for(int i=; i<=n; i++) {
scanf("%d", &a[i]);
belong[i] = (i-) / block + ;
mul[i] = ;
}
m = n;
while(m--) {
int op, l, r, c;
scanf("%d%d%d%d", &op, &l, &r, &c);
if(op == ) {
update1(l, r, c%mod);
} else if(op == ) {
update2(l, r, c%mod);
} else {
int ans = a[r]*mul[belong[r]]%mod + add[belong[r]]%mod;
printf("%d\n", ans%mod);
}
// for(int i=1; i<=n; i++) printf("%d%c", a[i]*mul[belong[i]]%mod + add[belong[i]]%mod, i==n ? '\n' : ' ');
}
}
return ;
}
LOJ#6283. 数列分块入门 7的更多相关文章
- LOJ #6283. 数列分块入门 7-分块(区间乘法、区间加法、单点查询)
#6283. 数列分块入门 7 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ——#6277. 数列分块入门 1
~~推荐播客~~ 「分块」数列分块入门1 – 9 by hzwer 浅谈基础根号算法——分块 博主蒟蒻,有缘人可直接观摩以上大佬的博客... #6277. 数列分块入门 1 题目大意: 给出一个长为 ...
- LOJ #6285. 数列分块入门 9-分块(查询区间的最小众数)
#6285. 数列分块入门 9 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给 ...
- LOJ #6284. 数列分块入门 8-分块(区间查询等于一个数c的元素,并将这个区间的所有元素改为c)
#6284. 数列分块入门 8 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 2 题目描述 给出 ...
- LOJ #6282. 数列分块入门 6-分块(单点插入、单点查询、数据随机生成)
#6282. 数列分块入门 6 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 1 题目描述 给出 ...
- LOJ #6281. 数列分块入门 5-分块(区间开方、区间求和)
#6281. 数列分块入门 5 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 5 题目描述 给出 ...
- LOJ #6280. 数列分块入门 4-分块(区间加法、区间求和)
#6280. 数列分块入门 4 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 题目描述 给出一个 ...
- LOJ #6279. 数列分块入门 3-分块(区间加法、查询区间内小于某个值x的前驱(比其小的最大元素))
#6279. 数列分块入门 3 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 3 题目描述 给 ...
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
随机推荐
- 【学习总结】Git学习-参考廖雪峰老师教程八-使用GitHub
学习总结之Git学习-总 目录: 一.Git简介 二.安装Git 三.创建版本库 四.时光机穿梭 五.远程仓库 六.分支管理 七.标签管理 八.使用GitHub 九.使用码云 十.自定义Git 期末总 ...
- 工作效率提升之Eclipse篇(1):干掉烦人的xml文件的validation
每次启动maven项目,都会有一堆烦人的xml文件的validation,一旦网络较慢,项目重新启动的时候,这些多余的验证纯属浪费时间. Eclipse上取消validation的方法: 1.菜单[W ...
- idea 创建的spingmvc 引入jquery后jquery函数始终不执行的原因
- PermGen space 内存溢出
1.修改D:\tools\tomcat\tomcat - 7\apache-tomcat-7.0.91\bin tomcat 路径下bin 文件的catalina.bat文件 添加 JAVA_OPTS ...
- Java——scoket通讯
Socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. Socket是TCP/IP协议通信的抽象层,所以我们还需要了解TCP协议 传输层协议 TCP: ...
- RedHat 安装RabbitMQ
(以下均以root用户执行) 1.安装配置epel源rpm -Uvh http://dl.fedoraproject.org/pub/epel/6/i386/epel-release-6-8.noar ...
- 不停机修改线上 MySQL 主键字段 以及其带来的问题和总结思考
起因: 线上 user 数据库没有自增字段,数据量已经达到百万级.无论是给离线仓库还是数据分析同步数据,没有主键自增 id 都是杀手级的困难.所以在使用 create_time 痛苦了几次之后准备彻底 ...
- Python魔法方法(magic method)细解几个常用魔法方法(上)
这里只分析几个可能会常用到的魔法方法,像__new__这种不常用的,用来做元类初始化的或者是__init__这种初始化使用的 每个人都会用的就不介绍了. 其实每个魔法方法都是在对内建方法的重写,和做像 ...
- Linux基础学习(16)--备份与恢复
第十六章——备份与恢复 一.备份概述 1.Linux系统需要备份的数据: 2.备份策略: 二.dump和restore命令 1.dump命令: 2.restore命令:
- import、export 和export default區別
https://www.cnblogs.com/xiaotanke/p/7448383.html