ELMO模型(Deep contextualized word representation)
1 概述
word embedding 是现在自然语言处理中最常用的 word representation 的方法,常用的word embedding 是word2vec的方法,然而word2vec本质上是一个静态模型,也就是说利用word2vec训练完每个词之后,词的表示就固定了,之后使用的时候,无论新句子上下文的信息是什么,这个词的word embedding 都不会跟随上下文的场景发生变化,这种情况对于多义词是非常不友好的。例如英文中的 Bank这个单词,既有河岸的意思,又有银行的意思,但是在利用word2vec进行word embedding 预训练的时候会获得一个混合多种语义的固定向量表示。即使在根据上下文的信息能明显知道是“银行”的情况下,它对应的word embedding的内容也不会发生改变。
ELMO的提出就是为了解决这种语境问题,动态的去更新词的word embedding。ELMO的本质思想是:事先用语言模型在一个大的语料库上学习好词的word embedding,但此时的多义词仍然无法区分,不过没关系,我们接着用我们的训练数据(去除标签)来fine-tuning 预训练好的ELMO 模型。作者将这种称为domain transfer。这样利用我们训练数据的上下文信息就可以获得词在当前语境下的word embedding。作者给出了ELMO 和Glove的对比
对于Glove训练出来的word embedding来说,多义词play,根据他的embedding 找出的最接近的其他单词大多数几种在体育领域,这主要是因为训练数据中包含play的句子大多数来源于体育领域,之后在其他语境下,play的embedding依然是和体育相关的。而使用ELMO,根据上下文动态调整后的embedding不仅能够找出对应的“表演”相同的句子,还能保证找出的句子中的play对应的词性也是相同的。接下来看看ELMO是怎么实现这样的结果的。
2 模型结构
ELMO 基于语言模型的,确切的来说是一个 Bidirectional language models,也是一个 Bidirectional LSTM结构。我们要做的是给定一个含有N个tokens的序列
$ {t_1, t_2, ..., t_N}$
其前向表示为:
反向表示为:
从上面的联合概率来看是一个典型的语言模型,前向利用上文来预测下文,后向利用下文来预测上文。假设输入的token是 $ x_k^{LM}$,在每一个位置 $k$ ,每一层LSTM 上都输出相应的context-dependent的表征 $\overrightarrow{h}_{k, j}^{LM}$。这里
$j = 1, 2, ..., L$, $L$表示LSTM的层数。顶层的LSTM 输出 $\overrightarrow{h}_{k, L}^{LM}$ ,通过softmax层来预测下一个 $token_{k+1}$。
对数似然函数表示如下:
模型的结构图如下:
ELMO 模型不同于之前的其他模型只用最后一层的输出值来作为word embedding的值,而是用所有层的输出值的线性组合来表示word embedding的值。
对于每个token,一个L层的biLM要计算出 $2L + 1$ 个表征:
在上面 $ X_k^{LM} $ 等于 $ h_{k, j} ^ {LM} $,表示的是token层的值。
在下游任务中会把$R_k$ 压缩成一个向量:
其中 $s_j^{task}$ 是softmax标准化权重,$\gamma^{task}$ 是缩放系数,允许任务模型去缩放整个ELMO向量。
ELMO的使用主要有三步:
1)在大的语料库上预训练 biLM 模型。模型由两层bi-LSTM 组成,模型之间用residual connection 连接起来。而且作者认为低层的bi-LSTM层能提取语料中的句法信息,高层的bi-LSTM能提取语料中的语义信息。
2)在我们的训练语料(去除标签),fine-tuning 预训练好的biLM 模型。这一步可以看作是biLM的domain transfer。
3)利用ELMO 产生的word embedding来作为任务的输入,有时也可以即在输入时加入,也在输出时加入。
ELMO 在六项任务上取得了the state of the art ,包括问答,情感分析等任务。总的来说,ELMO提供了词级别的动态表示,能有效的捕捉语境信息,解决多义词的问题。
ELMO模型(Deep contextualized word representation)的更多相关文章
- 论文翻译——Deep contextualized word representations
Abstract We introduce a new type of deep contextualized word representation that models both (1) com ...
- 深度学习论文笔记-Deep Learning Face Representation from Predicting 10,000 Classes
来自:CVPR 2014 作者:Yi Sun ,Xiaogang Wang,Xiaoao Tang 题目:Deep Learning Face Representation from Predic ...
- 翻译 Improved Word Representation Learning with Sememes
翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- 论文解读(GRACE)《Deep Graph Contrastive Representation Learning》
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Fe ...
- NLP直播-1 词向量与ELMo模型
翻车2次,试水2次,今天在B站终于成功直播了. 人气11万. 主要讲了语言模型.词向量的训练.ELMo模型(深度.双向的LSTM模型) 预训练与词向量 词向量的常见训练方法 深度学习与层次表示 LST ...
- 理解GloVe模型(Global vectors for word representation)
理解GloVe模型 概述 模型目标:进行词的向量化表示,使得向量之间尽可能多地蕴含语义和语法的信息.输入:语料库输出:词向量方法概述:首先基于语料库构建词的共现矩阵,然后基于共现矩阵和GloVe模型学 ...
- 【NLP CS224N笔记】Lecture 3 GloVe: Global Vectors for Word Representation
I. 复习word2vec的核心思路 1. Skip-gram 模型示意图: 2.word vectors的随机梯度 假设语料库中有这样一行句子: I love deep learning and N ...
- Learning a Deep Compact Image Representation for Visual Tracking
这篇博客对论文进行了部分翻译http://blog.csdn.net/vintage_1/article/details/19546953,不过个人觉得博主有些理解有误. 这篇博客简单分析了代码htt ...
随机推荐
- vim 的:x和:wq
vim是Unix/Linux系统最常用的编辑器之一,在保存文件时,我通常选择":wq",因为最开始学习vim的时候,就只记住了几个常用的命令:也没有细究命令的含义. 但是,最近我在 ...
- ConstraintLayout使用
引言 ConstraintLayout是一个ViewGroup,允许您以灵活的方式定位和调整小部件的方法,项目中的布局嵌套问题对项目性能有着不小的威胁,布局能实现扁平化的话会让软件性能得到很大的提升, ...
- Chrome 开发者工具
打开开发工具 (1)在Chrome菜单中选择 更多工具 > 开发者工具. (2)在页面元素上右键点击,选择 "检查". (3)使用快捷键 Ctrl+Shift+I (Wind ...
- jQuery效果之简单的手风琴效果
实现效果如图所示: html结构: <div class="item_box box10"> <div class="item_box_wp" ...
- JVM调优日志解析分析
一.调优参数设置 JVM的GC日志的主要参数包括如下几个: -XX:+PrintGC 输出GC日志 -XX:+PrintGCDetails 输出GC的详细日志 -XX:+PrintGCTimeStam ...
- Java多线程面试题整理
部分一:多线程部分: 1) 什么是线程? 线程是操作系统能够进行运算调度的最小单位,它被包含在进程之中,是进程中的实际运作单位.程序员可以通过它进行多处理器编程,你可以使用多线程对运算密集型任务提速. ...
- JMeter 配置元件之随机变量(RandomVariable)介绍
配置元件之随机变量(Random Variable)介绍 by:授客 QQ:1033553122 测试环境 apache-jmeter-3.2 1. 计数器简介 允许用户创建一个在线程组范围之内都 ...
- Implemented the “Importance Sampling of Reflections from Hair Fibers”
Just the indirect specular pass by importance sampling. With all layers. Manually traced by 3D Ham ...
- Centos 7下VMware三台虚拟机Hadoop集群初体验
一.下载并安装Centos 7 传送门:https://www.centos.org/download/ 注:下载DVD ISO镜像 这里详解一下VMware安装中的两个过程 网卡配置 是Add ...
- 基于OpenSSL的HTTPS通信C++实现
HTTPS是以安全为目标的HTTP通道,简单讲是HTTP的安全版.即HTTP下加入SSL层,HTTPS的安全基础是SSL,因此加密的详细内容就需要SSL.Nebula是一个为开发者提供一个快速开发 ...