LeetCode(74):搜索二维矩阵
Medium!
题目描述:
编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值。该矩阵具有如下特性:
- 每行中的整数从左到右按升序排列。
- 每行的第一个整数大于前一行的最后一个整数。
示例 1:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 3
输出: true
示例 2:
输入:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
输出: false
解题思路:
这道题要求搜索一个二维矩阵,由于给的矩阵是有序的,所以很自然的想到要用二分查找法,我们可以在第一列上先用一次二分查找法找到目标值所在的行的位置,然后在该行上再用一次二分查找法来找是否存在目标值。
C++解法一:
// Two binary search
class Solution {
public:
bool searchMatrix(vector<vector<int> > &matrix, int target) {
if (matrix.empty() || matrix[].empty()) return false;
if (target < matrix[][] || target > matrix.back().back()) return false;
int left = , right = matrix.size() - ;
while (left <= right) {
int mid = (left + right) / ;
if (matrix[mid][] == target) return true;
else if (matrix[mid][] < target) left = mid + ;
else right = mid - ;
}
int tmp = right;
left = ;
right = matrix[tmp].size() - ;
while (left <= right) {
int mid = (left + right) / ;
if (matrix[tmp][mid] == target) return true;
else if (matrix[tmp][mid] < target) left = mid + ;
else right = mid - ;
}
return false;
}
};
这道题也可以使用一次二分查找法,如果我们按S型遍历该二维数组,可以得到一个有序的一维数组,那么我们只需要用一次二分查找法,而关键就在于坐标的转换,如何把二维坐标和一维坐标转换是关键点,把一个长度为n的一维数组转化为m*n的二维数组(m*n = n)后,那么原一维数组中下标为i的元素将出现在二维数组中的[i/n][i%n]的位置,有了这一点,代码很好写出来了。
C++解法二:
// One binary search
class Solution {
public:
bool searchMatrix(vector<vector<int> > &matrix, int target) {
if (matrix.empty() || matrix[].empty()) return false;
if (target < matrix[][] || target > matrix.back().back()) return false;
int m = matrix.size(), n = matrix[].size();
int left = , right = m * n - ;
while (left <= right) {
int mid = (left + right) / ;
if (matrix[mid / n][mid % n] == target) return true;
else if (matrix[mid / n][mid % n] < target) left = mid + ;
else right = mid - ;
}
return false;
}
};
LeetCode(74):搜索二维矩阵的更多相关文章
- LeetCode 74. 搜索二维矩阵(Search a 2D Matrix)
74. 搜索二维矩阵 74. Search a 2D Matrix 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. ...
- Java实现 LeetCode 74 搜索二维矩阵
74. 搜索二维矩阵 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 1: ...
- leetcode 74 搜索二维矩阵 java
题目: 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 1: 输入: mat ...
- LeetCode 74——搜索二维矩阵
1. 题目 2. 解答 若矩阵为空,比如 [], [[]],此时直接返回 false. 若目标值小于矩阵第一个元素或者大于矩阵最后一个元素,则目标值不在矩阵范围内,直接返回 false. 其他情况下, ...
- LeetCode 74. 搜索二维矩阵(Search a 2D Matrix)
题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 1: 输入: ma ...
- Leetcode 74. 搜索二维矩阵 C+
二分法,先对行二分找出结果可能存在的行,再对这一行二分查找.O(Log m+Log n),m.n分别为矩阵的高和宽. class Solution { public: bool searchMatri ...
- LeetCode:搜索二维矩阵【74】
LeetCode:搜索二维矩阵[74] 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的 ...
- LeetCode 240. 搜索二维矩阵 II(Search a 2D Matrix II) 37
240. 搜索二维矩阵 II 240. Search a 2D Matrix II 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性 ...
- 【leetcode】74. 搜索二维矩阵
题目链接:传送门 题目描述 编写一个高效的算法来判断 m x n 矩阵中,是否存在一个目标值.该矩阵具有如下特性: 每行中的整数从左到右按升序排列. 每行的第一个整数大于前一行的最后一个整数. 示例 ...
- Leetcode 240.搜索二维矩阵II
搜索二维矩阵II 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. 示例: 现有 ...
随机推荐
- mysql 文件操作 表
一 : 访问库 use db1 查询当前表所在文件夹 : select database(); 增: create table t1(id int, name chat(10)); 查询: ...
- linux 压缩解压缩命令
- Javascript - ExtJs - 整合百度文章编辑器
ExtJs - 整合百度文章编辑器(ExtJs UEditor) 第一步:去官网下载最新版本的UEditor,UEditor下载. 第二步:在编辑器根目录创建一个Extjs-Editor.js,录入以 ...
- 【Math for ML】线性代数之——向量空间
I. Groups 在介绍向量空间之前有必要介绍一下什么Group,其定义如下: 注意定义中的\(\bigotimes\)不是乘法,而是一种运算符号的统一标识,可以是乘法也可以是加法等. 此外,如果\ ...
- Django实战(一)-----用户登录与注册系统5(图片验证码)
为了防止机器人频繁登录网站或者破坏分子恶意登录,很多用户登录和注册系统都提供了图形验证码功能. 验证码(CAPTCHA)是一种区分用户是计算机还是人的公共全自动程序. 可以防止恶意破解密码.刷票.论坛 ...
- zookeeperCli和Java操作zookeeperAPI
推荐一个zookeeper可视化工具:zktools.exe eclipse集成的工具: http://www.massedynamic.org/eclipse/updates/ 1.zkCli客户端 ...
- Thymeleaf相关补充
⒈理解Thymeleaf Java模板引擎.能够处理HTML.XML.JavaScript.CSS甚至纯文本.类似JSP.Freemarker 自然模板.原型即页面 语法优雅易懂,OGNL.Sprin ...
- 关于dubbo服务超时的讨论
呵呵,偷点懒,直接把QQ上的讨论发下来. huxin 10:35:19你们现在超时了是咋办的,首先超时了,回复用户肯定是要的 huxin 10:36:14超时了用户实际是不知道这业务是成功还失败了 ...
- 设计模式C++学习笔记之十六(Observer观察者模式)
16.1.解释 概念:定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新. main(), IObservable,被观察者接口 CHanFei ...
- web服务器上某一中文名文件无法访问
只需要在此目录下 convmv -f GBK -t UTF-8 --notest *.xxx 执行这个命令即可