题解:

因为n,m很大

所以复杂度应该是和m相关的

考虑到每个点的影响区间是连续的

就很简单了

区间查询最小值线段树维护(st表也可以)

然后注意一下不要重复算一个就可以了

max函数用template<class T> 不能与原来min重名

代码:

#pragma GCC optimize(2)
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define IL inline
#define rint register int
#define rep(i,h,t) for (rint i=h;i<=t;i++)
#define dep(i,t,h) for (rint i=t;i>=h;i--)
const int N=3e5;
const ll INF=1e18;
const int N2=1e7;
ll dis[N],sum1[N],sum2[N];
int n,m,cnt;
struct re{
int a;
ll b;
};
vector<int> ve;
ll data1[N2],data2[N2];
int ls[N2],rs[N2];
char ss[<<],*A=ss,*B=ss;
IL char gc()
{
return (A==B&&(B=(A=ss)+fread(ss,,<<,stdin),A==B)?EOF:*A++);
}
template<class T>void read(T &x)
{
rint f=,c; while (c=gc(),c<||c>) if (c=='-') f=-; x=c^;
while (c=gc(),<c&&c<) x=(x<<)+(x<<)+(c^); x*=f;
}
char sr[<<],z[]; int C=-,Z;
template <class T> void wer(T x)
{
if (x<) sr[++C]='-',x=-x;
while (z[++Z]=x%+,x/=);
while (sr[++C]=z[Z],--Z); sr[++C]='\n';
}
template<class T> T MAX(T x,T y)
{
if (x>y) return(x); else return(y);
}
template<class T> T MIN(T x,T y)
{
if (x<y) return(x); else return(y);
}
IL void swap(int &x,int &y)
{
int tmp=x; x=y; y=tmp;
}
void clear()
{
cnt=;
for (int i=;i<ve.size();i++)
{
int x=ve[i];
data1[x]=INF; data2[x]=INF; ls[x]=; rs[x]=;
}
ve.clear();
}
void updata(int x)
{
data1[x]=MIN(data1[ls[x]],data1[rs[x]]);
data2[x]=MIN(data2[ls[x]],data2[rs[x]]);
}
void change(int &x,int h,int t,int pos,ll k)
{
if (!x) x=++cnt;
ve.push_back(x);
if (h==t)
{
data1[x]=MIN(data1[x],sum1[pos-]+k);
data2[x]=MIN(data2[x],sum2[pos]+k);
return;
}
int mid=(h+t)/;
if (pos<=mid) change(ls[x],h,mid,pos,k);
else change(rs[x],mid+,t,pos,k);
updata(x);
}
ll query1(int x,int h,int t,int h1,int t1)
{
if (!x) return(INF);
if (h1<=h&&t<=t1) return(data1[x]);
ll ans=INF;
int mid=(h+t)/;
if (h1<=mid) ans=query1(ls[x],h,mid,h1,t1);
if (mid<t1) ans=MIN(ans,query1(rs[x],mid+,t,h1,t1));
return(ans);
}
ll query2(int x,int h,int t,int h1,int t1)
{
if (!x) return(INF);
if (h1<=h&&t<=t1) return(data2[x]);
ll ans=INF;
int mid=(h+t)/;
if (h1<=mid) ans=query2(ls[x],h,mid,h1,t1);
if (mid<t1) ans=MIN(ans,query2(rs[x],mid+,t,h1,t1));
return(ans);
}
IL ll check1(int h,int t,int x)
{
h=MAX(h,); t=MIN(t,n);
return(query2(,,n,h,t)-sum2[x]);
}
IL ll check2(int h,int t,int x)
{
h=MAX(h,); t=MIN(t,n);
return(query1(,,n,h,t)-sum1[x-]);
}
int main()
{
read(n); read(m);
rep(i,,n-) read(dis[i]);
rep(i,,n-) sum1[i]=dis[i],sum1[i]+=sum1[i-];
dep(i,n-,) sum2[i]=dis[i],sum2[i]+=sum2[i+];
rep(i,,N2-) data1[i]=INF,data2[i]=INF;
rep(i,,m)
{
int x,y;
ll ans=,z;
read(x);
vector<re> ve1;
ve1.push_back((re){,});
clear();
int root=;
rep(j,,x)
{
read(y); read(z);
change(root,,n,y,z);
ve1.push_back((re){y,z});
}
rep(j,,x)
{
int y=ve1[j].a;
ll z=ve1[j].b;
int h=y,t=n;
while (h<t)
{
int mid=(h+t+)/;
ll jl=sum1[mid-]-sum1[y-]+z;
if (MIN(check1(y+,mid,mid),check2(mid,*mid-y-,mid))>jl&&
check2(*mid-y,*mid-y,mid)>=jl) h=mid;
else t=mid-;
}
ans+=t-y;
h=,t=y;
while (h<t)
{
int mid=(h+t)/;
ll jl=sum1[y-]-sum1[mid-]+z;
if (MIN(check2(mid,y-,mid),check1(*mid-y+,mid,mid))>jl&&
check1(*mid-y,*mid-y,mid)>jl) t=mid;
else h=mid+;
}
ans+=y-h+;
}
wer(ans);
}
fwrite(sr,,C+,stdout);
return ;
}

zjoi[ZJOI2018]胖的更多相关文章

  1. 【BZOJ5308】[ZJOI2018]胖(模拟,ST表,二分)

    [BZOJ5308][ZJOI2018]胖(模拟,ST表,二分) 题面 BZOJ 洛谷 题解 首先发现每条\(0\)出发的边都一定会更新到底下的一段区间的点. 考虑存在一条\(0\rightarrow ...

  2. 5308: [Zjoi2018]胖

    5308: [Zjoi2018]胖 链接 分析: 题目转化为一个点可以更新多少个点,一个点可以更新的点一定是一个区间,考虑二分左右端点确定这个区间. 设当前点是x,向右二分一个点y,如果x可以更新到y ...

  3. P4501 [ZJOI2018]胖

    题目 P4501 [ZJOI2018]胖 官方口中的送分题 做法 我们通过手玩(脑补),\(a_i\)所作的贡献(能更新的点)为:在\(a_i\)更新\(\forall x\)更新前前没有其他点能把\ ...

  4. [ZJOI2018]胖

    嘟嘟嘟 都说这题是送分题,但我怎么就不觉得的呢. 看来我还是太弱了啊-- 大体思路就是对于每一个设计方案,答案就是每一个关键点能更新的点的数量之和. 关键在于怎么求一个关键点能更新那些点. 首先这些点 ...

  5. ZJOI2018 胖 二分 ST表

    原文链接https://www.cnblogs.com/zhouzhendong/p/ZJOI2018Day2T2.html 题目传送门 - BZOJ5308 题目传送门 - LOJ2529 题目传送 ...

  6. 2019.03.04 bzoj5308: [Zjoi2018]胖(二分答案+st表)

    传送门 想题5分钟调题两小时系列 其实还是我tcl 读完题之后自然会知道一个关键点能够更新的点是一段连续的区间,于是我们对于每个点能到的左右区间二分答案,用ststst表维护一下查询即可. 代码: # ...

  7. BZOJ5308 ZJOI2018胖

    贝尔福特曼(?)的方式相当于每次将所有与源点直接相连的点的影响区域向两边各扩展一格.显然每个点在过程中最多更新其他点一次且这些点构成一段连续区间.这个东西二分st表查一下就可以了.注意某一轮中两点都更 ...

  8. 洛谷P4501/loj#2529 [ZJOI2018]胖(ST表+二分)

    题面 传送门(loj) 传送门(洛谷) 题解 我们对于每一个与宫殿相连的点,分别计算它会作为多少个点的最短路的起点 若该点为\(u\),对于某个点\(p\)来说,如果\(d=|p-u|\),且在\([ ...

  9. bzoj 5308: [Zjoi2018]胖

    Description Cedyks是九条可怜的好朋友(可能这场比赛公开以后就不是了),也是这题的主人公. Cedyks是一个富有的男孩子.他住在著名的ThePLace(宫殿)中. Cedyks是一个 ...

随机推荐

  1. 《Windows核心编程》读书笔记 上

    [C++]<Windows核心编程>读书笔记 这篇笔记是我在读<Windows核心编程>第5版时做的记录和总结(部分章节是第4版的书),没有摘抄原句,包含了很多我个人的思考和对 ...

  2. 【转】采用dlopen、dlsym、dlclose加载动态链接库

    1.前言 为了使程序方便扩展,具备通用性,可以采用插件形式.采用异步事件驱动模型,保证主控制逻辑不变,将各个业务以动态链接库的形式加载进来,这就是所谓的插件.linux提供了加载和处理动态链接库的系统 ...

  3. CF449C:Jzzhu and Apples

    题意简述 给出正整数n,你要把1-n之间的正整数分成尽可能多组,使得每一组两个数的最大公约数大于1;输出能分成最多组的个数,并按任意顺序输出每组的两个数. 很妙的一道题. 首先我们考虑去处理每个质数的 ...

  4. 利用 git format-patch 和 git send-email 把修改的 patch 文件发送给 ffmpeg-devel

    1. 下载源码git clone https://git.ffmpeg.org/ffmpeg.git 2. 设置 git 用户的邮箱和姓名git config --global user.email ...

  5. 微信小程序-两个input叠加,多次点击字体变粗或闪动

    问题描述: 当两个input叠加,多次点击input框, placeholder 字体变粗或input框闪动.如图: 代码: <!-- 最上层input-1 --> <input p ...

  6. 028_shell脚本递归求值

    一. #!/bin/sh factorial() { if [ "$1" -gt "1" ]; then i=`expr $1 - 1` j=`factoria ...

  7. 025_lua脚本语言

    一.--cat /opt/nginx/conf/conf.dlua_package_path '/opt/nginx/conf/lua/?.lua;;'; --lua模块路径,其中”;;”表示默认搜索 ...

  8. 【原创】大数据基础之Logstash(3)应用之file解析(grok/ruby/kv)

    从nginx日志中进行url解析 /v1/test?param2=v2&param3=v3&time=2019-03-18%2017%3A34%3A14->{'param1':' ...

  9. android端 socket长连接 架构

    看过包建强的<App研发录>之后对其中的基础Activity类封装感到惊讶,一直想找一种方式去解决关于app中使用socket长连接问题,如何实现简易的封装来达到主活动中涉及socket相 ...

  10. Weblogic12c 单节点安装

    第一节weblogic12c 的安装   WebLogic除了包括WebLogic Server服务器之外,还包括一些围绕WebLogic的产品,习惯上我们说的WebLogic是指WebLogic S ...