马尔可夫毯(Markov Blanket)

最近接触到马尔可夫毯(MarkovBlanket)这个概念,发现网上资料不多,通俗易懂的解释甚少,查了一些资料后,决定写一个总结。

提到马尔可夫毯,就会有一堆从名字上看很相近的概念,比如马尔可夫链(Markov Chain, MC)、隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(MarkovRandom Field, MRF)等等。其实,马尔可夫毯与这些概念不同,它是一个局部的概念,而不是一个整体模型级别的概念。以下内容主要参考【何宪. 基于贝叶斯网络的马尔可夫毯发现算法研究[D]. 电子科技大学, 2012.】,更多内容请参阅原文献。

首先看马尔可夫毯的定义

这种纯符号的定义看起来有些抽象,形象一点说,把一个随机变量全集U分成互斥的三部分,变量X以及集合A和B,三个子集没有交集,并集即为全集U;如果说给定集合A时,变量X与集合B没有任何关系,则称集合A为变量X的马尔可夫毯。在式(2-16)中,集合MB即为我说的集合A,{U-MB-{X}}即为我说的集合B,符号“⊥”表示“独立”,符号“|”表示在给定xx条件下,因此式(2-16)可读为“在给定集合MB时,变量X与{U-MB-{X}}独立”。

打个比方说,全集U是整个社会,X是你个人,MB就是你生活圈子里的人。按照哲学的说法,万事万物都是有联系的;但是,你并不会与社会里的所有人有什么关系,而是通过你的生活圈子和他们有间接的关系,即当给定你的生活圈子以后,你和社会其余的人是没啥关系的(独立的)。

特殊一点,当以上提到的全集是可信的贝叶斯网络(Bayesian Network, BN)的各个结点的时候:

这段话说的比较严谨,通俗点儿说就是在可信的贝叶斯网络中,一个节点的马尔可夫毯包括它的爸妈、它的所有孩子、还有它的配偶,即生它的人和它参与生出来的人及它的现任妻子(因为你会发现孩子并非都是T和配偶共有的^_^)。再通俗点儿说,其实用我国传统的家庭组成来解释最为形象,以家里的男主人为核心(即图中的T),一家人包括爷爷奶奶(X1、X2,即T的爸妈)、小俩口(T他自己、X8)、孩子(X6、X7,其中X7是小俩口一起生的,X6是T和前妻生的,但现归T抚养,已经没前妻啥事儿了^_^)。值得注意的是,每个节点的配偶可以不止一个(即允许一夫多妻制,假如添加一条从X4到X6的箭头,则X4也是T的配偶),也可以没有配偶(即单身,比如图中的X4,虽然有两个孩子,但目前单身),当然我在这里假设的性别也是随时在变的,找谁的马尔可夫毯,谁就是男性^_^

那么马尔可夫毯有什么用处呢?文中提到了特征选择(当然这只是用处之一):

换句话说,一个人的马尔可夫毯就是和你有关系的所有人(按式2-16定义)。如果想要调查这个人,总不能把全社会的所有人都调查一下吧(大量的特征冗余),其实只要找出这个人的马尔可夫毯人群调查一下就好了(特征选择)。特别地,如果这个社会是贝叶斯网络,马尔可夫毯人群只包括自己的家人,相当于人只与自己的家人有关系,和其他人没关系,是一种简化的模型,具体可以查一查贝叶斯网络的概念。

那么怎么找出这个人的马尔可夫毯人群呢?那就去看看原文献吧……

最后简单谈一点贝叶斯网络,它是一个有向无环图(Directed Acyclic Graph, DAG),如图2-2所示,结点之间的连结都是有向箭头,且不能沿着箭头走一圈。贝叶斯网络是马尔可夫链的推广,马尔可夫链限定了结构只能是一条链,而贝叶斯网络则不再限定结构是一个链,但二者都遵守马尔可夫假设,即一个结点只依赖于它的上一个节点(一阶马尔可夫假设)。有关马尔可夫链、隐马尔可夫模型、贝叶斯网络可以看一看《数学之美》,“统计语言模型”一章会涉及到马尔可夫链,专门有一章叫“隐含马尔可夫模型”,还有一章叫“马尔可夫链的扩展——贝叶斯网络”,讲的比较通俗易懂,此处不再赘述。

文中几次提到了可信的贝叶斯网络,在文献第3章给了可信性的定义:

也不知道上面的定义是不是指的“可信的贝叶斯网络”中的“可信”,个人理解“可信的”意思可能是指这个贝叶斯网络是个真正的贝叶斯网络,即满足马尔可夫假设。

来源:CSDN
原文:https://blog.csdn.net/jbb0523/article/details/78424522

马尔可夫毯(Markov Blanket)的更多相关文章

  1. 马尔可夫毯(Markov blanket)

    马尔可夫毯(Markov blanket) 马尔科夫毯,是满足如下特性的一个最小特征子集:一个特征在其马尔科夫毯条件下,与特征域中所有其他特征条件独立.设特征T的马尔科夫毯为MB(T),则上述可表示为 ...

  2. 马尔科夫毯(Markov Blanket)

    最优特征子集:选出特征的子集,能够比较准确的代表原来的特征.马尔科夫毯(MB)是贝叶斯网络(BN)的最有特征子集. 推测贝叶斯网络的网络结构是NP问题.贝叶斯网络中一个节点T的马尔科夫毯是其父节点,子 ...

  3. 从马尔可夫模型(Markov Model)到隐马尔可夫模型(Hidden Markov Model)

    1.参考资料: 博客园 - 刘建平随笔:https://www.cnblogs.com/pinard/p/6945257.html 哔站up主 - 白手起家的百万富翁:https://www.bili ...

  4. 马尔科夫链蒙特卡洛(Markov chain Monte Carlo)

    (学习这部分内容大约需要1.3小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC) 是一类近似采样算法. 它通过一条拥有稳态分布 \(p\) 的马尔科夫链对 ...

  5. PGM:无向图模型:马尔可夫网

    http://blog.csdn.net/pipisorry/article/details/52489321 马尔可夫网 马尔可夫网在计算机视觉领域通常称为马尔可夫随机场(Markov random ...

  6. 强化学习(二)马尔科夫决策过程(MDP)

    在强化学习(一)模型基础中,我们讲到了强化学习模型的8个基本要素.但是仅凭这些要素还是无法使用强化学习来帮助我们解决问题的, 在讲到模型训练前,模型的简化也很重要,这一篇主要就是讲如何利用马尔科夫决策 ...

  7. 【转载】 强化学习(二)马尔科夫决策过程(MDP)

    原文地址: https://www.cnblogs.com/pinard/p/9426283.html ------------------------------------------------ ...

  8. 【强化学习】MOVE37-Introduction(导论)/马尔科夫链/马尔科夫决策过程

    写在前面的话:从今日起,我会边跟着硅谷大牛Siraj的MOVE 37系列课程学习Reinforcement Learning(强化学习算法),边更新这个系列.课程包含视频和文字,课堂笔记会按视频为单位 ...

  9. 白话马尔科夫链蒙特卡罗方法(MCMC)

    前言 你清茶园不是人待的地方! 里面的个个都是人才,说话又好听--就是我太菜了啥也听不懂,这次期中还考的贼**烂,太让人郁闷了. 最近课上讲这个马尔科夫链蒙特卡罗方法,我也学得一塌糊涂.这时我猛然想起 ...

随机推荐

  1. 牛客小白月赛2 E:是是非非(尼姆博弈)

    链接:https://www.nowcoder.com/acm/contest/86/E来源:牛客网 题目描述 坎为水,险阳失道,渊深不测:离为火,依附团结,光明绚丽.坎卦:水洊至,习坎:君子以常德行 ...

  2. 水题 不要62 HDU 2089

    先预处理出所有的数是不是可能拿来用,我的想法是记录1-i这个区间内可用的数为s[i]. 输入a,b.答案就为s[b] - s[a-1]. 贴代码: #include<cstdio> #de ...

  3. 各大OJ题目分类

    http://www.pythontip.com/acm/problemCategory

  4. 偶尔用得上的MySQL操作

    数据库编码 查看数据库编码 use xxx show variables like 'character_set_database'; 切换数据库编码 alter database xxx CHARA ...

  5. JavaWeb学习总结(二)-修改Tomcat服务器的端口(半年之后再总结)

    一.Tomcat服务器端口的配置 Tomcat的所有配置都放在conf文件夹之中,里面的server.xml文件是配置的核心文件(hibernate.cfg.xml是核心配置文件). 如果想修改Tom ...

  6. SharedImageCollection

    https://documentation.devexpress.com/#WindowsForms/clsDevExpressUtilsSharedImageCollectiontopic The ...

  7. Codelf 变量取名

    Codelf 变量取名 可以看到别的变量是怎么命名的,站在巨人的肩膀上.

  8. nginx 官方docker镜像使用教程

    最近在看nignx,在本地虚拟机使用docker nginx镜像搭建了nginx+php环境 整理的教程如下: 拉取nginx镜像docker pull nginx 创建一个容器,并挂载本地目录doc ...

  9. winform 程序调用及参数调用

    调用程序: // 新轮廓 -> 调用轮廓扫描程序        private void toolStripMenuItem9_Click(object sender, EventArgs e) ...

  10. 二分法查找 (Binary Search)

    二分法查找适用于排列有序的数据.java实现方法如下: // Find the location of a value in array a // Array a must be sorted // ...