python之路----进程二
守护进程
会随着主进程的结束而结束。
主进程创建守护进程
其一:守护进程会在主进程代码执行结束后就终止
其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止
import os
import time
from multiprocessing import Process class Myprocess(Process):
def __init__(self,person):
super().__init__()
self.person = person
def run(self):
print(os.getpid(),self.name)
print('%s正在和女主播聊天' %self.person) p=Myprocess('哪吒')
p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
p.start()
time.sleep(10) # 在sleep时查看进程id对应的进程ps -ef|grep id
print('主')
守护进程的启动
from multiprocessing import Process def foo():
print(123)
time.sleep(1)
print("end123") def bar():
print(456)
time.sleep(3)
print("end456") p1=Process(target=foo)
p2=Process(target=bar) p1.daemon=True
p1.start()
p2.start()
time.sleep(0.1)
print("main-------")#打印该行则主进程代码结束,则守护进程p1应该被终止.#可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止.
主进程代码执行结束守护进程立即结束
多进程中的其他方法
from multiprocessing import Process
import time
import random class Myprocess(Process):
def __init__(self,person):
self.name=person
super().__init__() def run(self):
print('%s正在和网红脸聊天' %self.name)
time.sleep(random.randrange(1,5))
print('%s还在和网红脸聊天' %self.name) p1=Myprocess('哪吒')
p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True print('开始')
print(p1.is_alive()) #结果为False
进程对象的其他方法:terminate,is_alive
class Myprocess(Process):
def __init__(self,person):
self.name=person # name属性是Process中的属性,标示进程的名字
super().__init__() # 执行父类的初始化方法会覆盖name属性
#self.name = person # 在这里设置就可以修改进程名字了
#self.person = person #如果不想覆盖进程名,就修改属性名称就可以了
def run(self):
print('%s正在和网红脸聊天' %self.name)
# print('%s正在和网红脸聊天' %self.person)
time.sleep(random.randrange(1,5))
print('%s正在和网红脸聊天' %self.name)
# print('%s正在和网红脸聊天' %self.person) p1=Myprocess('哪吒')
p1.start()
print(p1.pid) #可以查看子进程的进程id
进程对象的其他属性:pid和name
锁 —— multiprocess.Lock
通过刚刚的学习,我们千方百计实现了程序的异步,让多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。
当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。
import os
import time
import random
from multiprocessing import Process def work(n):
print('%s: %s is running' %(n,os.getpid()))
time.sleep(random.random())
print('%s:%s is done' %(n,os.getpid())) if __name__ == '__main__':
for i in range(3):
p=Process(target=work,args=(i,))
p.start()
多进程抢占输出资源
# 由并发变成了串行,牺牲了运行效率,但避免了竞争,保护了数据安全
import os
import time
import random
from multiprocessing import Process,Lock def work(lock,n):
lock.acquire()
print('%s: %s is running' % (n, os.getpid()))
time.sleep(random.random())
print('%s: %s is done' % (n, os.getpid()))
lock.release()
if __name__ == '__main__':
lock=Lock()
for i in range(3):
p=Process(target=work,args=(lock,i))
p.start()
使用锁维护执行顺序
上面这种情况虽然使用加锁的形式实现了顺序的执行,但是程序又重新变成串行了,这样确实会浪费了时间,却保证了数据的安全。
接下来,我们以模拟抢票为例,来看看数据安全的重要性。
文件taicket的内容为:{"count":5}
#注意一定要用双引号,不然json无法识别
#并发运行,效率高,但竞争写同一文件,数据写入错乱
import json
import time
import random
from multiprocessing import Lock
from multiprocessing import Process def search(i):
with open('taicket') as f:
print(json.load(f)['count'])
def get(i):
with open('taicket') as f:
ticket_num = json.load(f)['count']
time.sleep(random.random())
if ticket_num > 0:
with open('taicket','w') as f:
json.dump({'count':ticket_num-1},f)
print('%s买到===飘了'%i)
else:print('%s没票了'%i) def task(i,Lock):
search(i)
Lock.acquire()
get(i)
Lock.release() if __name__ == '__main__':
Lock = Lock()
for i in range(10):
p = Process(target=task,args=(i,Lock))
p.start()
多进程抢票
#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据)
2.需要自己加锁处理 #因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
队列和管道都是将数据存放于内存中
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
信号量 —— multiprocess.Semaphore
互斥锁同时只允许一个线程更改数据,而信号量Semaphore是同时允许一定数量的线程更改数据 。
假设商场里有4个迷你唱吧,所以同时可以进去4个人,如果来了第五个人就要在外面等待,等到有人出来才能再进去玩。
实现:
信号量同步基于内部计数器,每调用一次acquire(),计数器减1;每调用一次release(),计数器加1.当计数器为0时,acquire()调用被阻塞。这是迪科斯彻(Dijkstra)信号量概念P()和V()的Python实现。信号量同步机制适用于访问像服务器这样的有限资源。
信号量与进程池的概念很像,但是要区分开,信号量涉及到加锁的概念
from multiprocessing import Process,Semaphore
import time,random def go_ktv(sem,user):
sem.acquire()
print('%s 占到一间ktv小屋' %user)
time.sleep(random.randint(0,3)) #模拟每个人在ktv中待的时间不同
sem.release() if __name__ == '__main__':
sem=Semaphore(4)
p_l=[]
for i in range(13):
p=Process(target=go_ktv,args=(sem,'user%s' %i,))
p.start()
p_l.append(p) for i in p_l:
i.join()
print('============》')
例子
事件 —— multiprocess.Event
python线程的事件用于主线程控制其他线程的执行,事件主要提供了三个方法 set、wait、clear。 事件处理的机制:全局定义了一个“Flag”,如果“Flag”值为 False,那么当程序执行 event.wait 方法时就会阻塞,如果“Flag”值为True,那么event.wait 方法时便不再阻塞。 clear:将“Flag”设置为False
set:将“Flag”设置为True 事件介绍
from multiprocessing import Process, Event
import time, random def car(e, n):
while True:
if not e.is_set(): # 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
print('\033[31m红灯亮\033[0m,car%s等着' % n)
e.wait() # 阻塞,等待is_set()的值变成True,模拟信号灯为绿色
print('\033[32m车%s 看见绿灯亮了\033[0m' % n)
time.sleep(random.randint(3, 6))
if not e.is_set(): #如果is_set()的值是Flase,也就是红灯,仍然回到while语句开始
continue
print('车开远了,car', n)
break def police_car(e, n):
while True:
if not e.is_set():# 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
print('\033[31m红灯亮\033[0m,car%s等着' % n)
e.wait(0.1) # 阻塞,等待设置等待时间,等待0.1s之后没有等到绿灯就闯红灯走了
if not e.is_set():
print('\033[33m红灯,警车先走\033[0m,car %s' % n)
else:
print('\033[33;46m绿灯,警车走\033[0m,car %s' % n)
break def traffic_lights(e, inverval):
while True:
time.sleep(inverval)
if e.is_set():
print('######', e.is_set())
e.clear() # ---->将is_set()的值设置为False
else:
e.set() # ---->将is_set()的值设置为True
print('***********',e.is_set()) if __name__ == '__main__':
e = Event()
for i in range(10):
p=Process(target=car,args=(e,i,)) # 创建是个进程控制10辆车
p.start() for i in range(5):
p = Process(target=police_car, args=(e, i,)) # 创建5个进程控制5辆警车
p.start()
t = Process(target=traffic_lights, args=(e, 10)) # 创建一个进程控制红绿灯
t.start() print('============》') 红绿灯实例
红绿灯实例
进程间通信——队列 multiprocess.Queue
进程间通信 :IPC(Inter-Process Communication)
队列
概念介绍
创建共享的进程队列,Queue是多进程安全的队列,可以使用Queue实现多进程之间的数据传递。
Queue([maxsize])
创建共享的进程队列。
参数 :maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。
底层队列使用管道和锁定实现。
Queue([maxsize])
创建共享的进程队列。maxsize是队列中允许的最大项数。如果省略此参数,则无大小限制。底层队列使用管道和锁定实现。另外,还需要运行支持线程以便队列中的数据传输到底层管道中。
Queue的实例q具有以下方法: q.get( [ block [ ,timeout ] ] )
返回q中的一个项目。如果q为空,此方法将阻塞,直到队列中有项目可用为止。block用于控制阻塞行为,默认为True. 如果设置为False,将引发Queue.Empty异常(定义在Queue模块中)。timeout是可选超时时间,用在阻塞模式中。如果在制定的时间间隔内没有项目变为可用,将引发Queue.Empty异常。 q.get_nowait( )
同q.get(False)方法。 q.put(item [, block [,timeout ] ] )
将item放入队列。如果队列已满,此方法将阻塞至有空间可用为止。block控制阻塞行为,默认为True。如果设置为False,将引发Queue.Empty异常(定义在Queue库模块中)。timeout指定在阻塞模式中等待可用空间的时间长短。超时后将引发Queue.Full异常。 q.qsize()
返回队列中目前项目的正确数量。此函数的结果并不可靠,因为在返回结果和在稍后程序中使用结果之间,队列中可能添加或删除了项目。在某些系统上,此方法可能引发NotImplementedError异常。 q.empty()
如果调用此方法时 q为空,返回True。如果其他进程或线程正在往队列中添加项目,结果是不可靠的。也就是说,在返回和使用结果之间,队列中可能已经加入新的项目。 q.full()
如果q已满,返回为True. 由于线程的存在,结果也可能是不可靠的(参考q.empty()方法)。。
方法介绍
q.close()
关闭队列,防止队列中加入更多数据。调用此方法时,后台线程将继续写入那些已入队列但尚未写入的数据,但将在此方法完成时马上关闭。如果q被垃圾收集,将自动调用此方法。关闭队列不会在队列使用者中生成任何类型的数据结束信号或异常。例如,如果某个使用者正被阻塞在get()操作上,关闭生产者中的队列不会导致get()方法返回错误。 q.cancel_join_thread()
不会再进程退出时自动连接后台线程。这可以防止join_thread()方法阻塞。 q.join_thread()
连接队列的后台线程。此方法用于在调用q.close()方法后,等待所有队列项被消耗。默认情况下,此方法由不是q的原始创建者的所有进程调用。调用q.cancel_join_thread()方法可以禁止这种行为。
其他方法(了解)
代码实例
'''
multiprocessing模块支持进程间通信的两种主要形式:管道和队列
都是基于消息传递实现的,但是队列接口
''' from multiprocessing import Queue
q=Queue(3) #put ,get ,put_nowait,get_nowait,full,empty
q.put(3)
q.put(3)
q.put(3)
# q.put(3) # 如果队列已经满了,程序就会停在这里,等待数据被别人取走,再将数据放入队列。
# 如果队列中的数据一直不被取走,程序就会永远停在这里。
try:
q.put_nowait(3) # 可以使用put_nowait,如果队列满了不会阻塞,但是会因为队列满了而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去,但是会丢掉这个消息。
print('队列已经满了') # 因此,我们再放入数据之前,可以先看一下队列的状态,如果已经满了,就不继续put了。
print(q.full()) #满了 print(q.get())
print(q.get())
print(q.get())
# print(q.get()) # 同put方法一样,如果队列已经空了,那么继续取就会出现阻塞。
try:
q.get_nowait(3) # 可以使用get_nowait,如果队列满了不会阻塞,但是会因为没取到值而报错。
except: # 因此我们可以用一个try语句来处理这个错误。这样程序不会一直阻塞下去。
print('队列已经空了') print(q.empty()) #空了
单看队列用法
上面这个例子还没有加入进程通信,只是先来看看队列为我们提供的方法,以及这些方法的使用和现象。
import time
from multiprocessing import Process, Queue def f(q):
q.put([time.asctime(), 'from Eva', 'hello']) #调用主函数中p进程传递过来的进程参数 put函数为向队列中添加一条数据。 if __name__ == '__main__':
q = Queue() #创建一个Queue对象
p = Process(target=f, args=(q,)) #创建一个进程
p.start()
print(q.get())
p.join()
子进程发送数据给父进程
上面是一个queue的简单应用,使用队列q对象调用get函数来取得队列中最先进入的数据。 接下来看一个稍微复杂一些的例子:
import os
import time
import multiprocessing # 向queue中输入数据的函数
def inputQ(queue):
info = str(os.getpid()) + '(put):' + str(time.asctime())
queue.put(info) # 向queue中输出数据的函数
def outputQ(queue):
info = queue.get()
print ('%s%s\033[32m%s\033[0m'%(str(os.getpid()), '(get):',info)) # Main
if __name__ == '__main__':
multiprocessing.freeze_support()
record1 = [] # store input processes
record2 = [] # store output processes
queue = multiprocessing.Queue(3) # 输入进程
for i in range(10):
process = multiprocessing.Process(target=inputQ,args=(queue,))
process.start()
record1.append(process) # 输出进程
for i in range(10):
process = multiprocessing.Process(target=outputQ,args=(queue,))
process.start()
record2.append(process) for p in record1:
p.join() for p in record2:
p.join()
批量生产数据放入队列再批量获取结果 x
生产者消费者模型
在并发编程中使用生产者和消费者模式能够解决绝大多数并发问题。该模式通过平衡生产线程和消费线程的工作能力来提高程序的整体处理数据的速度。
为什么要使用生产者和消费者模式
在线程世界里,生产者就是生产数据的线程,消费者就是消费数据的线程。在多线程开发当中,如果生产者处理速度很快,而消费者处理速度很慢,那么生产者就必须等待消费者处理完,才能继续生产数据。同样的道理,如果消费者的处理能力大于生产者,那么消费者就必须等待生产者。为了解决这个问题于是引入了生产者和消费者模式。
什么是生产者消费者模式
生产者消费者模式是通过一个容器来解决生产者和消费者的强耦合问题。生产者和消费者彼此之间不直接通讯,而通过阻塞队列来进行通讯,所以生产者生产完数据之后不用等待消费者处理,直接扔给阻塞队列,消费者不找生产者要数据,而是直接从阻塞队列里取,阻塞队列就相当于一个缓冲区,平衡了生产者和消费者的处理能力。
基于队列实现生产者消费者模型
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start()
print('主')
基于队列实现生产者消费者模型
此时的问题是主进程永远不会结束,原因是:生产者p在生产完后就结束了,但是消费者c在取空了q之后,则一直处于死循环中且卡在q.get()这一步。
解决方式无非是让生产者在生产完毕后,往队列中再发一个结束信号,这样消费者在接收到结束信号后就可以break出死循环。
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(10):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.put(None) #发送结束信号
if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start()
print('主') 改良版——生产者消费者模型
注意:结束信号None,不一定要由生产者发,主进程里同样可以发,但主进程需要等生产者结束后才应该发送该信号
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(q):
for i in range(2):
time.sleep(random.randint(1,3))
res='包子%s' %i
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=(q,)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,)) #开始
p1.start()
c1.start() p1.join()
q.put(None) #发送结束信号
print('主')
主进程在生产者生产完毕后发送结束信号None
但上述解决方式,在有多个生产者和多个消费者时,我们则需要用一个很low的方式去解决
from multiprocessing import Process,Queue
import time,random,os
def consumer(q):
while True:
res=q.get()
if res is None:break #收到结束信号则结束
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res)) def producer(name,q):
for i in range(2):
time.sleep(random.randint(1,3))
res='%s%s' %(name,i)
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res)) if __name__ == '__main__':
q=Queue()
#生产者们:即厨师们
p1=Process(target=producer,args=('包子',q))
p2=Process(target=producer,args=('骨头',q))
p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,))
c2=Process(target=consumer,args=(q,)) #开始
p1.start()
p2.start()
p3.start()
c1.start() p1.join() #必须保证生产者全部生产完毕,才应该发送结束信号
p2.join()
p3.join()
q.put(None) #有几个消费者就应该发送几次结束信号None
q.put(None) #发送结束信号
print('主')
多个消费者的例子:有几个消费者就需要发送几次结束信号
JoinableQueue([maxsize])
创建可连接的共享进程队列。这就像是一个Queue对象,但队列允许项目的使用者通知生产者项目已经被成功处理。通知进程是使用共享的信号和条件变量来实现的。
JoinableQueue的实例p除了与Queue对象相同的方法之外,还具有以下方法: q.task_done()
使用者使用此方法发出信号,表示q.get()返回的项目已经被处理。如果调用此方法的次数大于从队列中删除的项目数量,将引发ValueError异常。 q.join()
生产者将使用此方法进行阻塞,直到队列中所有项目均被处理。阻塞将持续到为队列中的每个项目均调用q.task_done()方法为止。
下面的例子说明如何建立永远运行的进程,使用和处理队列上的项目。生产者将项目放入队列,并等待它们被处理。
方法介绍
from multiprocessing import Process,JoinableQueue
import time,random,os
def consumer(q):
while True:
res=q.get()
time.sleep(random.randint(1,3))
print('\033[45m%s 吃 %s\033[0m' %(os.getpid(),res))
q.task_done() #向q.join()发送一次信号,证明一个数据已经被取走了 def producer(name,q):
for i in range(10):
time.sleep(random.randint(1,3))
res='%s%s' %(name,i)
q.put(res)
print('\033[44m%s 生产了 %s\033[0m' %(os.getpid(),res))
q.join() #生产完毕,使用此方法进行阻塞,直到队列中所有项目均被处理。 if __name__ == '__main__':
q=JoinableQueue()
#生产者们:即厨师们
p1=Process(target=producer,args=('包子',q))
p2=Process(target=producer,args=('骨头',q))
p3=Process(target=producer,args=('泔水',q)) #消费者们:即吃货们
c1=Process(target=consumer,args=(q,))
c2=Process(target=consumer,args=(q,))
c1.daemon=True
c2.daemon=True #开始
p_l=[p1,p2,p3,c1,c2]
for p in p_l:
p.start() p1.join()
p2.join()
p3.join()
print('主') #主进程等--->p1,p2,p3等---->c1,c2
#p1,p2,p3结束了,证明c1,c2肯定全都收完了p1,p2,p3发到队列的数据
#因而c1,c2也没有存在的价值了,不需要继续阻塞在进程中影响主进程了。应该随着主进程的结束而结束,所以设置成守护进程就可以了。
JoinableQueue队列实现消费之生产者模型
python之路----进程二的更多相关文章
- python之路-进程
博客园 首页 新随笔 联系 管理 订阅 随笔- 31 文章- 72 评论- 115 python之路——进程 阅读目录 理论知识 操作系统背景知识 什么是进程 进程调度 进程的并发与并行 ...
- python之路----进程(一)
一.理论知识1.操作系统发展简介 1.没有操作系统 —— 穿孔卡片 2.批处理系统 —— 串行 ,速度块 联机批处理 读磁带的时候速度快 脱机批处理 读磁带和cpu工作并发 3.多道程序系统 —— 并 ...
- python之路——进程
操作系统背景知识 顾名思义,进程即正在执行的一个过程.进程是对正在运行程序的一个抽象. 进程的概念起源于操作系统,是操作系统最核心的概念,也是操作系统提供的最古老也是最重要的抽象概念之一.操作系统的其 ...
- 百万年薪python之路 -- 模块二
1. 序列化模块 什么是序列化呢? 序列化的本质就是将一种数据结构(如字典.列表)等转换成一个特殊的序列(字符串或者bytes)的过程就叫做序列化. 为什么要有序列化模块? 如果你写入文件中的字符串是 ...
- python之路十二
本节内容 数据库介绍 mysql 数据库安装使用 mysql管理 mysql 数据类型 常用mysql命令 创建数据库 外键 增删改查表 权限 事务 索引 python 操作mysql ORM sql ...
- Python之路Day19-Django(二)
本节内容概要: 一.路由系统URL 二.视图 三.模板 四.ORM操作 问题1:Django请求生命周期 -> URL对应关系(匹配) -> 视图函数 -> 返回用户字符串 -> ...
- Python之路Day16--JavaScript(二)
本节内容: 1.上节内容回顾 2.JavaScript补充 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ 一.上节内容回顾 1.作业问题: a.页面布局不好 ...
- Python之路,进程、线程、协程篇
本节内容 进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者 ...
- python之路--进程内容补充
一. 进程的其他方法 进程id, 进程名字, 查看进程是否活着(is_alive()), terminate()发送结束进程的信号 import time import os from multipr ...
随机推荐
- hdu1272 小希的迷宫【并查集】
上次Gardon的迷宫城堡小希玩了很久(见Problem B),现在她也想设计一个迷宫让Gardon来走.但是她设计迷宫的思路不一样,首先她认为所有的通道都应该是双向连通的,就是说如果有一个通道连通了 ...
- 【转】JavaScript prototype
原文地址:http://www.cnblogs.com/dolphinX/p/3286177.html 用过JavaScript的同学们肯定都对prototype如雷贯耳,但是这究竟是个什么东西却让初 ...
- Python中各种括号的区别、用途及使用方法
python语言最常见的括号有三种,分别是:小括号( ).中括号[ ]和大括号也叫做花括号{ }.其作用也各不相同,分别用来代表不同的python基本内置数据类型. python中的小括号( ):代表 ...
- HDU 6312 - Game - [博弈][杭电2018多校赛2]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6312 Problem Description Alice and Bob are playing a ...
- 冒泡排序之python
冒泡排序(Bubble sort) 两两比较相邻记录的关键字,如果反序则交换,直到没有反序记录为止. 1.算法描述: 比较相邻的元素.如果第一个比第二个大,就交换它们两个: 对每一对相邻元素作同样的工 ...
- 异步IO
异步IO 在IO编程一节中,我们已经知道,CPU的速度远远快于磁盘.网络等IO.在一个线程中,CPU执行代码的速度极快,然而,一旦遇到IO操作,如读写文件.发送网络数据时,就需要等待IO操作完成, ...
- 很多人以为 connect 和 disconnect 应该像 new 和 delete 一样成对出现 这是错误的(只要 sender 或 receiver 其中之一不存在了,connect 会自动失效。QObject::connect 函数是线程安全的)
其实我写文章也是边查资料边编辑的 有时候是怕自己的阐述不严谨,有时候是怕自己重复造轮子 就像有些人不停的教大家QLabel QDialog QWidget 个人是不屑的 命令模式 用 Qt's Und ...
- 【虫师Python】第二讲:元素定位
一.六种定位方式 1.id 2.name 3.class name 4.tag name:定位标签 5.link text:定位一个链接,如果是中文,需要在代码文最前面加一句I话|:#coding=u ...
- 01_Python 基础课程安排
Python 基础课程安排 目标 明确基础班课程内容 课程清单 序号 内容 目标 01 Linux 基础 让大家对 Ubuntu 的使用从很 陌生 达到 灵活操作 02 Python 基础 涵盖 Py ...
- 解决FileInputStream读取文本时 最后端会多出字符问题
使用 read(byte[]) 方法读取文本的时候,要用 String str = new String(byte[],int offset,int len) 来将数组中的元素转换为String字符串 ...