Exercise:Vectorization

习题的链接:Exercise:Vectorization

注意点:

MNIST图片的像素点已经经过归一化。

如果再使用Exercise:Sparse Autoencoder中的sampleIMAGES.m进行归一化,

将使得训练得到的可视化权值如下图:

更改train.m的参数设置

visibleSize = *;   % number of input units
hiddenSize = ; % number of hidden units
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term

更改sampleIMAGES.m

function patches = sampleIMAGES()
% sampleIMAGES
% Returns patches for training load images; % load images from disk patchsize = ; % we'll use 28x28 patches
numpatches = ; % Initialize patches with zeros. Your code will fill in this matrix--one
% column per patch, columns.
patches = zeros(patchsize*patchsize, numpatches); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Fill in the variable called "patches" using data
% from images. patches = images(:, :);

训练得到的W1可视化:

【DeepLearning】Exercise:Vectorization的更多相关文章

  1. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  2. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  3. 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders

    Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...

  4. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  5. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  6. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  7. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 【UFLDL】Exercise: Convolutional Neural Network

    这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...

随机推荐

  1. 揭秘uc浏览器四

    请问大家用过uc浏览器,他收藏一个网页是怎么操作的? 是不是这样,按菜单键——弹出添加网页,收藏网页等等的菜单操作,这个菜单操作很人性化了,并且在前面的篇幅已经说过了,这里不做太多的赘述了. 我这里只 ...

  2. Android -- EventBus解析

    EventBus EventBus 是一个 Android 事件发布/订阅框架,通过解耦发布者和订阅者简化 Android 事件传递.传统的事件传递方式包括:Handler.BroadCastRece ...

  3. linux命令学习——md5sum

    1.简介 MD5算法常常被用来验证网络文件传输的完整性,防止文件被人篡改.MD5 全称是报文摘要算法(Message-Digest Algorithm 5),此算法对任意长度的信息逐位进行计算,产生一 ...

  4. MSVC and MinGW DLLs

    Posted February 26th, 2009 by earnie dll faq msvc TODO: Reformat to new wiki syntax. !!! [Minimalist ...

  5. GL_ACTIVE_UNIFORMS可能不会返回没有用到的uniform

    To query for the list of active uniforms in a program, you first call glGetProgramiv with the GL_ACT ...

  6. DOpus 10.5 使用帮助

    在线手册 http://www.dearopus.com/ http://resource.dopus.com/ http://www.gpsoft.com.au/help/opus10/ 应急截图编 ...

  7. 构造并发送Beacon帧以伪造任意WiFi热点

    请想象一下这样的情景:你可以任意伪造很多个WiFi热点, 这个技术只能在linux上使用,而且对无线网卡也有一定的挑剔,具体的下面会讲- 阶段一:基本原理 首先需要搞清楚的是,手机.电脑等支持WiFi ...

  8. 【树莓派】【网摘】树莓派与XBMC及Kodi、LibreELEC插件(三)

    之前的相关文章参考: [树莓派]树莓派与XBMC及Kodi.LibreELEC插件(一) [树莓派]树莓派与XBMC及Kodi.LibreELEC插件(二) [树莓派]树莓派与XBMC及Kodi.Li ...

  9. 从头认识Spring-1.14 SpEl表达式(1)-简单介绍与嵌入值

    这一章节我们来讨论一下SpEl表达式的简单介绍与嵌入值. 1.SpEl表达式简单介绍 Spring Excpression Language (SpEL)语言支持在执行时操作和查询对象 事实上就是在执 ...

  10. editcap的使用

    editcap.exe -h Editcap (Wireshark) (v2.-gf42a0d2b6c) Edit and/or translate the format of capture fil ...