【DeepLearning】Exercise:Vectorization
Exercise:Vectorization
习题的链接:Exercise:Vectorization
注意点:
MNIST图片的像素点已经经过归一化。
如果再使用Exercise:Sparse Autoencoder中的sampleIMAGES.m进行归一化,
将使得训练得到的可视化权值如下图:
更改train.m的参数设置
- visibleSize = *; % number of input units
- hiddenSize = ; % number of hidden units
- sparsityParam = 0.1; % desired average activation of the hidden units.
- % (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
- % in the lecture notes).
- lambda = 3e-; % weight decay parameter
- beta = ; % weight of sparsity penalty term
更改sampleIMAGES.m
- function patches = sampleIMAGES()
- % sampleIMAGES
- % Returns patches for training
- load images; % load images from disk
- patchsize = ; % we'll use 28x28 patches
- numpatches = ;
- % Initialize patches with zeros. Your code will fill in this matrix--one
- % column per patch, columns.
- patches = zeros(patchsize*patchsize, numpatches);
- %% ---------- YOUR CODE HERE --------------------------------------
- % Instructions: Fill in the variable called "patches" using data
- % from images.
- patches = images(:, :);
训练得到的W1可视化:
【DeepLearning】Exercise:Vectorization的更多相关文章
- 【DeepLearning】Exercise:Softmax Regression
Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...
- 【DeepLearning】Exercise:Convolution and Pooling
Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...
- 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders
Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...
- 【DeepLearning】Exercise: Implement deep networks for digit classification
Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...
- 【DeepLearning】Exercise:Self-Taught Learning
Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...
- 【DeepLearning】Exercise:PCA and Whitening
Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...
- 【DeepLearning】Exercise:PCA in 2D
Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...
- 【DeepLearning】Exercise:Sparse Autoencoder
Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...
- 【UFLDL】Exercise: Convolutional Neural Network
这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...
随机推荐
- Android -- java代码设置margin
我们平常可以直接在xml里设置margin,如: <ImageView android:layout_margin="5dip" android:src="@dra ...
- Building LinkedIn’s Real-time Activity Data Pipeline
转自:http://blog.163.com/guaiguai_family/blog/static/20078414520138911393767/ http://sites.computer.or ...
- Eclipse里选一个变量后,这个类里的该变量不变色了
使用“Alt+Shift+O”对该提示功能的开/关切换
- win8下Source Insight has not been installed completely问题的解决
系统:windows8 软件:Source Insight 3.5 安装后打开总是提示如下图错误,没法使用. 卸载重新安装好多次,还是不行,百度一下,终于找到方法,记录一下,方便以后查找. 解决方法: ...
- xshell5不能用
转载:xshell 5 不能用 https://51.ruyo.net/10002.html
- how-to-get-a-job-in-deep-learning
http://blog.deepgram.com/how-to-get-a-job-in-deep-learning/ How to Get a Job In Deep Learning 22 SEP ...
- Logcat用法初探
首先定位到adb所在的目录 将手机连接上电脑. 在命令行运行: adb devices 这个命令可以列出所有连上的移动设备. 在命令行运行: adb logcat 可以显示日志. 以下是例子截图: ...
- HotSpot Java虚拟机中的“方法区”“持久代”“元数据区”的关系?
Sun/Oracle JDK的HotSpot VM中,直到JDK7都有“持久代”(Permanent Generation,简称PermGen).也称为方法区.Oracle JDK8的HotSpot ...
- LXC 容器集chroot使用说明
1.1 LXC是什么? 1.1.1 关于LXC LXC,其名称来自Linux软件容器(Linux Containers)的缩写,一种操作系统层虚拟化(Operating system–level vi ...
- javascript高级语法学习
可维护的代码意味着: 可读的 一致的 可预测的 看上去就像是同一个人写的 已记录 命名函数表达式 (function fn(){}) 他是表达式的原因是因为括号 ()是一个分组操作符,它的内部只能包含 ...