Description

一个无向连通图,顶点从1编号到N,边从1编号到M。 
小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数。当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和。 
现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小。

Input

第一行是正整数N和M,分别表示该图的顶点数 和边数,接下来M行每行是整数u,v(1≤u,v≤N),表示顶点u与顶点v之间存在一条边。 输入保证30%的数据满足N≤10,100%的数据满足2≤N≤500且是一个无向简单连通图。

Output

仅包含一个实数,表示最小的期望值,保留3位小数。

每个点i走到的期望次数x[i]=(i==1?1:0)+sigma(x[j]/o[j]) (j!=n , i到j有边)
o[j]为j的度
高斯消元解出每个x[i]
边(a,b)走过的期望次数为(a==n?0:x[a]/o[a])+(b==n?0:x[b]/o[b])
按边走过的次数从大到小排序并顺序编号
#include<cstdio>
#include<vector>
#include<algorithm>
int n,m,a,b;
std::vector<int>es[];
double xs[][],ys[],x[],ans=;
int o[];
inline bool is0(double x){return x<1.0e-10&&x>-1.0e-10;}
inline bool isn0(double x){return x>=1.0e-10||x<=-1.0e-10;}
struct edge{
int a,b;
double v;
}e[];
int ep=;
bool operator<(edge a,edge b){
return a.v>b.v;
}
int main(){
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d",&a,&b);
es[a].push_back(b);
es[b].push_back(a);
o[a]++;o[b]++;
e[ep].a=a;e[ep++].b=b;
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++)xs[i][j]=;
xs[i][i]=-;
for(int j=;j<es[i].size();j++){
int u=es[i][j];
if(u!=n)xs[i][u]+=1.0/o[u];
}
ys[i]=;
}
ys[]=-;
for(int t=;t<=n;t++){
if(is0(xs[t][t]))
for(int i=t+;i<=n;i++){
if(isn0(xs[i][t])){
for(int j=t;j<=n;j++){double v=xs[i][j];xs[i][j]=xs[t][j];xs[t][j]=v;}
double v=ys[i];ys[i]=ys[t];ys[t]=v;
}
}
double c=1.0/xs[t][t];
for(int i=t;i<=n;i++)xs[t][i]*=c;
ys[t]*=c;
for(int i=t+;i<=n;i++){
if(isn0(xs[i][t])){
double k=xs[i][t];
for(int j=t;j<=n;j++){
xs[i][j]-=xs[t][j]*k;
}
ys[i]-=ys[t]*k;
}
}
}
for(int t=n;t;t--){
for(int i=t+;i<=n;i++){
ys[t]-=xs[t][i]*x[i];
}
x[t]=ys[t];
}
for(int i=;i<ep;i++){
e[i].v=;
if(e[i].a!=n)e[i].v+=x[e[i].a]/o[e[i].a];
if(e[i].b!=n)e[i].v+=x[e[i].b]/o[e[i].b];
}
std::sort(e,e+ep);
for(int i=;i<ep;i++)ans+=e[i].v*(i+);
printf("%.3lf\n",ans);
return ;
}

bzoj3143 游走的更多相关文章

  1. 【Hnoi2013】Bzoj3143 游走

    Position: http://www.lydsy.com/JudgeOnline/problem.php?id=3143 List Bzoj3143 Hnoi2013 游走 List Descri ...

  2. [HNOI2013][BZOJ3143] 游走 - 高斯消元

    题目描述 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边 ...

  3. bzoj3143 游走 期望dp+高斯消元

    题目传送门 题意: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得 ...

  4. bzoj3143游走

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 学到了无向图中点被经过的期望次数和边被经过的期望次数. 一个点被经过的期望次数  就是 ...

  5. bzoj3143游走——期望+高斯消元

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3143 只需算出每条边被经过的概率,将概率从小到大排序,从大到小编号,就可得到最小期望: 每条 ...

  6. 【BZOJ3143】游走(高斯消元,数学期望)

    [BZOJ3143]游走(高斯消元,数学期望) 题面 BZOJ 题解 首先,概率不会直接算... 所以来一个逼近法算概率 这样就可以求出每一条边的概率 随着走的步数的增多,答案越接近 (我卡到\(50 ...

  7. 【BZOJ3143】[Hnoi2013]游走 期望DP+高斯消元

    [BZOJ3143][Hnoi2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 ...

  8. 【BZOJ3143】【HNOI2013】游走 && 【BZOJ3270】博物馆 【高斯消元+概率期望】

    刚学完 高斯消元,我们来做几道题吧! T1:[BZOJ3143][HNOI2013]游走 Description 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小 ...

  9. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

随机推荐

  1. 远程桌面连接 [Content] 出现身份验证错误。 要求的函数不受支持

    [Window Title] 远程桌面连接 [Content] 出现身份验证错误. 要求的函数不受支持 以上是我远程得时候报的错.   下面直接上  最NB得解决方案.不管用直接在下面评论 通过管理控 ...

  2. oracle查询在当前数据库下当前用户拥有的表语句

    1.查询表的数目: select count(*) from tabs select count(*) from user_tables 2.查询用户拥有哪些表: select * from tabs ...

  3. IntentService的用法,对比Service它会按顺序执行,不会像Service一样并发执行。

    package com.lixu.intentservice; import android.app.Activity; import android.content.Intent; import a ...

  4. Mac OS X 10.9下解决cocos2d-x在Xcode4.6.x的模板不显示问题

    最近将iMac 升级到10.9了,奇怪的事情发生了,cocos2d-x的模板不见了,鼓捣了半天发现问题所在 打开xcode新建工程却找不到cocos2d-x的模板. 经过在网上的苦苦搜寻和试验后,找到 ...

  5. 使用 PHP 框架 Yii 访问 MS SQL 的尝试

    今天尝试在 Wamp 环境下访问 MS SQL 数据库,有以下心得.使用 PHP 5.3 + pdo_odbc + Yii 1.1 框架,以下两个代码段可以成功. 1.直接使用 PDO 方式,可以获取 ...

  6. Installing MIB in Ubuntu and Solving the Error “SNMP Cannot Find Module …”

    Has noticed an error after executing the command snmpwalk with the indication of MIB instead of OID: ...

  7. 使用 Koa + MongoDB + Redis 搭建论坛系统

    koa 相对于 express 的优势在于, 1.  使用了 yield generator 封装了co 框架, 使得异步处理, 能像同步那样书写 2.  使用了 中间件 ko-schema, 使得验 ...

  8. Redis----windows下的常用命令二

    Redis 是一个开源,高级的键值对的存储.它经常作为服务端的数据结构,它的键的数据类型能够是strings, hashs, lists, sets(无序集合) 和 sorted sets(有序集合) ...

  9. antd中fomr中resetFields清空输入框

    1.如果没有initValue的情况下,直接使用resetFields可以清空文本框的值 2.如果是有initValue的情况下,直接使用resetFields方法会直接重置为initValue的值 ...

  10. PyCharm 注释

    1.1 单行注释(行注释) 语法格式: #[空格]说明性文字信息 注:可放一行代码的后面进行说明 添加快捷键:  Ctrl+/ 取消快捷键:  同上 1.2 多行注释(块注释) 语法格式: " ...