109. Magic of David Copperfield II

time limit per test: 0.25 sec. 
memory limit per test: 4096 KB

The well-known magician David Copperfield loves lo show the following trick: a square with N rows and N columns of different pictures appears on a TV screen, Let us number all the pictures in the following order:

1 2 ... N
... ... ... ...
N*(N-1)+1 N*(N-1)+2 ... N*N

Each member of the audience is asked to put a finger on the upper left picture (i.e., picture number one) and The Magic begins: the magician tells the audience to move the finger K1 times through the pictures (each move is a shift of the finger to the adjacent picture up, down, left or right provided that there is a picture to move to), then with a slight movement of his hand he removes some of the pictures with an exclamation "You are not there!", and ... it is true - your finger is not pointing to any of the pictures removed. Then again, he tells the audience to make K2 moves, and so on. At the end he removes all the pictures but one and smiling triumphantly declares, "I've caught you" (applause).

Just now, David is trying to repeat this trick. Unfortunately, he had-a hard day before, and you know how hard to conjure with a headache. You have to write a program that will help David to make his trick.

Input

The input file contains a single integer number N (1<N<101).

Output

Your program should write the following lines with numbers to the output file:
K1 X1,1 X1,2 ... X1,m1
K2 X2,1 X2,2 ... X2,m2
...
Ke Xe,1 Xe,2 ... Xe,me
where Ki is a number of moves the audience should make on the i-th turn (N<=Ki<300). All Ki, should be different (i.e. Ki<>Kj when i<>j). Xi,1 Xi,2 ... Xi,mi are the numbers of the pictures David should remove after the audience will make Ki moves (the number of the pictures removed is arbitrary, but each picture should be listed only once, and at least one picture should be removed on each turn).
A description of the every next turn should begin with a new line. All numbers on each line should be separated by one or more spaces. After e iterations, all pictures except one should be removed.

Sample Input

3

Sample Output

3 1 3 7 9
5 2 4 6 8 一开始被题意吓住了,但是画一画就能发现,
只要是奇数步,就不能停留在原位,要是把整个迷宫划分成国际棋盘的黑白格,那么奇数步必然只能转移到异色格上,
注意到这点而且题目是special judge ,只需注意随时保持还没被染色的在一块大联通域里面就行了,(要是被孤立了那么玩家就不能再走,魔术师就算是没有完成魔术,要是多个区块就不知道玩家到底在哪个区块了,这样无法消除到只有一个含一块的区块)
这里为了保证这一点我使用的是从外向里,每次推一层的方法,假设出发点(0,0)是白格(计算中使用了二维坐标,结果转化为i*n+j+1)
对于里面的第i层,先消去上一层i-1层未涂色的白格,再消去i层可以消去的白格(相邻的黑格都有两个及以上个没有被消去的白格相邻),最后新建一个操作,消去i层的所有黑格(这时候i层的白格不会受影响,因为还有i+1层)

大致染色过程如图
因为染色操作最多有(n/2)*2,开头使用n也不会超出300的操作数
W原因:没有注意到ki<300
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=102;
const int dx[4]={1,0,-1,0},dy[4]={0,1,0,-1};
bool vis[maxn][maxn];
int n;
int heap1[maxn*maxn],len1,heap2[maxn*maxn],len2,heapt[maxn*maxn],lent;//heap1 第i圈可以消去的白 heap2 第i-1圈没有消掉的白 heapt 第i圈的第二个操作消去的黑格
bool oneentry(int x,int y){//只有一个出口
int fl=0;
for(int i=0;i<4;i++){
int tx=x+dx[i],ty=y+dy[i];
if(tx>=0&&tx<n&&ty>=0&&ty<n&&!vis[tx][ty]){
fl++;
}
}
return fl<=1;
}
bool avail(int x,int y){//是否会抓住顾客
for(int i=0;i<4;i++){
int tx=x+dx[i],ty=y+dy[i];
if(tx>=0&&tx<n&&ty>=0&&ty<n&&!vis[tx][ty]){
if(oneentry(tx,ty))return false;
}
}
return true;
}
int main(){
while(scanf("%d",&n)==1){
memset(vis,0,sizeof(vis));
len1=len2=lent=0;
int num=n&1?n:n+1;
for(int i=0;i<n/2;i++){
printf("%d ",num);num+=2;
for(int k=0;k<len2;k++)printf("%d ",heap2[k]);//上层未涂色白格
len1=len2=lent=0;
int x=i,y=i;
for(int dr=0;dr<4;dr++){
for(int j=0;j<n-2*i-1;j++){
if((x+y)&1){heapt[lent++]=x*n+y+1;vis[x][y]=true;}//黑格
else if(avail(x,y)){heap1[len1++]=x*n+y+1;vis[x][y]=true;}//暂时不能选的白格
else {heap2[len2++]=x*n+y+1;vis[x][y]=true;}//可选择白格
x+=dx[dr];
y+=dy[dr];
}
}
for(int k=0;k<len1;k++){
printf("%d%c",heap1[k],k==len1-1?'\n':' ');//涂白格
}
printf("%d ",num);num+=2;
for(int k=0;k<lent;k++)printf("%d%c",heapt[k],k==lent-1?'\n':' ');//涂黑格
}
}
return 0;
}

  


109. Magic of David Copperfield II 构造 难度:2的更多相关文章

  1. 构造 - SGU 109 Magic of David Copperfield II

    Magic of David Copperfield II Problem's Link Mean: 略 analyse: 若i+j为奇数则称(i,j)为奇格,否则称(i+j)为偶格,显然每一次报数后 ...

  2. sgu 109 Magic of David Copperfield II

    这个题意一开始没弄明白,后来看的题解才知道这道题是怎么回事,这道题要是自己想难度很大…… 你一开始位于(1,1)这个点,你可以走k步,n <= k < 300,由于你是随机的走的, 所以你 ...

  3. Magic of David Copperfield II(奇偶性)

    题目大意:这是一个魔术游戏,首先把你的手指放在一个左上角的格子里面,然后魔术师说你可以移动K1步,移动完之后,他会删除一些方格,并且说,你肯定不在这里,删除的方格不可以再去了,然后让你再走K2步,继续 ...

  4. UVa LA 4094 WonderTeam 构造 难度: 1

    题目 https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_pr ...

  5. BZOJ3098: Hash Killer II(构造)

    Time Limit: 5 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 2162  Solved: 1140[Submit][Status][ ...

  6. Codeforces 346C Number Transformation II 构造

    题目链接:点击打开链接 = = 990+ms卡过 #include<stdio.h> #include<iostream> #include<string.h> # ...

  7. POJ 3295 Tautology 构造 难度:1

    Tautology Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 9580   Accepted: 3640 Descrip ...

  8. SGU 138. Games of Chess 构造 难度:2

    138. Games of Chess time limit per test: 0.25 sec. memory limit per test: 4096 KB N friends gathered ...

  9. sgu 137. Funny Strings 线性同余,数论,构造 难度:3

    137. Funny Strings time limit per test: 0.25 sec. memory limit per test: 4096 KB Let's consider a st ...

随机推荐

  1. Linux进程间通信--使用信号量【转】

    本文转载自:http://blog.csdn.net/ljianhui/article/details/10243617 这篇文章将讲述别一种进程间通信的机制——信号量.注意请不要把它与之前所说的信号 ...

  2. Android Studio Design界面不显示layout控件的解决方法

    发现更改了 layout里面的xml文件后  切换到design后,没有显示控件 解决方法 解决办法: 在 res/values/styles.xml 文件中  将原有的 前面添加 Base. The ...

  3. Apache Kylin1.5.2.1之订单案例详细构建流程

    转:http://blog.itpub.net/30089851/viewspace-2122586/ 一.Hive订单数据仓库构建1. 创建事实表并插入数据 DROP TABLE IF EXISTS ...

  4. UVa 10618 跳舞机

    https://vjudge.net/problem/UVA-10618 这道题目题意很复杂,代码也是参考了别人的,因为自己实在是写不出.d[i][a][b][s]表示分析到第i个箭头时,此时左脚处于 ...

  5. UVa 10118 免费糖果(记忆化搜索+哈希)

    https://vjudge.net/problem/UVA-10118 题意: 桌上有4堆糖果,每堆有N颗.佳佳有一个最多可以装5颗糖的小篮子.他每次选择一堆糖果,把最顶上的一颗拿到篮子里.如果篮子 ...

  6. MUI --- 多个页面之间的传值 A页面B 页面 C页面

    问题: 夸页面传值的,A.B.C三个页面,点A弹出B,C是B子页面;A有两个值要传到C页面中,要怎么样传递呢? A页面传值就不累述了 B页面才是关键 mui.plusReady(function() ...

  7. 安装Zookeeper和kafka,安装完毕后,遇到的错误

    按照原文链接 http://www.cnblogs.com/swneng/p/10212460.html 在windows下进行安装 之后运行 D:\00H_Bigdata\kafka_2.11-2. ...

  8. JSONP跨域后回调函数中的参数使用

    有关于跨域的解决方案网上的资源十分丰富,我是参考这个博主的:https://blog.csdn.net/u014607184/article/details/52027879: 这里的response ...

  9. 《剑指offer》第四题(二维数组中的查找)

    // 二维数组中的查找 // 题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按 // 照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个 // 整数,判断数组 ...

  10. Codeforces 894B - Ralph And His Magic Field

    894B - Ralph And His Magic Field 思路: 当k为1时,如果n和m奇偶性不同,那么没有答案. 可以证明,在其他情况下有答案,且答案为2^(n-1)*(m-1),因为前n- ...