问题描述

程序开始运行的时候报出警告:
I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

解决方法

加入下面两行代码,忽略警告:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = ''

说明:

os.environ["TF_CPP_MIN_LOG_LEVEL"] = '' # 这是默认的显示等级,显示所有信息
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '' # 只显示 warning 和 Error
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '' # 只显示 Error

参考:
https://blog.csdn.net/hq86937375/article/details/79696023
https://blog.csdn.net/qq_41185868/article/details/79127838

解决tensorflow的"Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Using TensorFlow backend."警告问题的更多相关文章

  1. 2019-09-16 16:42:03.621946: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA Traceback (most recent cal

    -- ::] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA ...

  2. 运行TensorFlow出现Your CPU supports instructions that this TensorFlow binary was not compiled to use: AV

    原因: import os #在顶头位置加上 os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # '1'表示默认的显示等级,运行时显示所有信息 os. ...

  3. Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

    解决方法: 如果安装的是GPU版本 如果你有一个GPU,你不应该关心AVX的支持,因为大多数昂贵的操作将被分派到一个GPU设备上(除非明确地设置).在这种情况下,您可以简单地忽略此警告: import ...

  4. 如何解决tensorflow报:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

    答:使能AVX,AVX2和FMA来进行源码编译,这样可以提速噢 具体编译方法,请参考windows10下如何进行源码编译安装tensorflow

  5. 报错Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

    解决方法:import os                  os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'输入1:显示所有信息 2:只显示warning和erro ...

  6. 警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA

    加入 import os os.environ[' demo: import os os.environ[' import tensorflow as tf tf.enable_eager_execu ...

  7. I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA 问题

    临时解决版本进入python后只需下面命令 import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

  8. 报错解决——Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2

    在导入tensorflow后,进行运算时,出现了报错Your CPU supports instructions that this TensorFlow binary was not compile ...

  9. Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2

    pycharm运行TensorFlow警告:Your CPU supports instructions that this TensorFlow binary was not compiled to ...

随机推荐

  1. 使用JavaScript / JQuery导出 html table 数据至 Excel 兼容IE/Chrome/Firefox

    function fnExcelReport() { var tab_text="<table border='2px'><tr bgcolor='#87AFC6'> ...

  2. c++ 判断数组元素是否都是奇数(all_of)

    #include <iostream> // std::cout #include <algorithm> // std::all_of #include <array& ...

  3. 学以致用 ---- vue子组件→父组件通信

    之前写过一篇关于 vue2.0中v-on绑定自定义事件 的随笔,但是今天实际应用的时候才发现根本就不理解,下面是实际工作中遇到的问题: [情景描述]页面中的[下拉搜索组件],因为多个页面中用到,所以抽 ...

  4. 算法笔记--st表

    概述:用倍增法求区间最值的离线算法,O(nlogn)预处理,O(1)访问. 预处理: 状态:st[i][j]:[i,i+2^j)之间的最值 状态转移:如果j等于0,st[i][j]=a[i] 如果j大 ...

  5. Codeforces 913D - Too Easy Problems

    913D - Too Easy Problems 思路:二分check k 代码: #include<bits/stdc++.h> using namespace std; #define ...

  6. template.js 模版内调用外部JS方法

    template.js 一款 JavaScript 模板引擎,简单,好用.提供一套模板语法,用户可以写一个模板区块,每次根据传入的数据,生成对应数据产生的HTML片段,渲染不同的效果.模版定义如下: ...

  7. getpagesize.c:32: __getpagesize: Assertion `_rtld_global_ro._dl_pagesize != 0' failed

    为arm 编译 mysql , 执行的时候出现了这个问题. 好像是个bug, https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=626379 重新编译 ...

  8. SpringBoot 中常用注解@Controller/@RestController/@RequestMapping介绍

    原文 SpringBoot 中常用注解 @Controller/@RestController/@RequestMapping介绍 @Controller 处理http请求 @Controller / ...

  9. English trip -- VC(情景课)8 D Reading

    Listen and read. Shop Smart [smɑːt]  Employee of the Month: Sara['særə] (萨拉) Lopez(洛佩斯) Congratulati ...

  10. 『OpenCV3』处理视频&摄像头

    在opencv中,摄像头和视频文件并没有很大不同,都是一个可以read的数据源,使用cv2.VideoCapture(path).read()可以获取(flag,当前帧),对于每一帧,使用图片处理函数 ...