终于知道怎么卡spfa(不优化)这一毒瘤算法了

下面就是造数据代码,点数才1e5,边数379980

随便测了一组数据:

count: 831841219(入队次数)

68917.096 ms(足够t到死了)

//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=400000+10,inf=0x3f3f3f3f; struct edge{int a,b,c;};
vector<edge>v;
int main()
{
srand(time(0));
freopen("a.txt","w",stdout);
int n=10,m=10000;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(j!=m)
{
v.pb({(i-1)*m+j,(i-1)*m+j+1,rand()%100000+1});
v.pb({(i-1)*m+j+1,(i-1)*m+j,rand()%100000+1});
}
if(i!=n)
{
v.pb({(i-1)*m+j,i*m+j,1});
v.pb({i*m+j,(i-1)*m+j,1});
}
}
}
printf("%d %d\n",n*m,v.size());
random_shuffle(v.begin(),v.end());
for(int i=0;i<v.size();i++)
printf("%d %d %d\n",v[i].a,v[i].b,v[i].c);
return 0;
}
/******************** ********************/

spfa代码

//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
#define C 0.5772156649
#define ls l,m,rt<<1
#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
#define fio ios::sync_with_stdio(false);cin.tie(0)
template<typename T>
inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>
inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;} using namespace std; const double eps=1e-8;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=1000000+10,maxn=4000000+10,inf=0x3f3f3f3f; struct edge{
int to,Next,c;
}e[maxn];
int cnt,head[N];
void init()
{
cnt=0;
memset(head,-1,sizeof head);
}
void add(int u,int v,int c)
{
e[cnt].to=v;
e[cnt].c=c;
e[cnt].Next=head[u];
head[u]=cnt++;
}
bool vis[N];
ll dis[N];
void spfa()
{
memset(vis,0,sizeof vis);
memset(dis,INF,sizeof dis);
vis[1]=1;dis[1]=0;
queue<int>q;
q.push(1);
int co=0;
while(!q.empty())
{
int u=q.front();q.pop();
vis[u]=0;
for(int i=head[u];~i;i=e[i].Next)
{
int x=e[i].to;
if(dis[x]>dis[u]+e[i].c)
{
dis[x]=dis[u]+e[i].c;
if(!vis[x])
{
vis[x]=1;
q.push(x);
co++;
}
}
}
}
printf("count: %d\n",co);
}
int main()
{
int a=clock();
freopen("a.txt","r",stdin);
init();
int n,m;
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
spfa();
printf("%d\n",dis[n]);
int b=clock();
printf("%.3f ms\n",1.0*(b-a)/1000);
return 0;
}
/******************** ********************/

spfa毒瘤算法的更多相关文章

  1. poj3259Wormholes (Bellman_Ford/SPFA/Floyed算法判断是否存在负环)

    题目链接:http://poj.org/problem?id=3259 题目大意:一个图,有n个顶点,其中有m条边是双向的且权值为为正,w条边是单向的且权值为负,判断途中是否存在负环,如果有输出YES ...

  2. spfa 的算法实现之一

    问题描述:给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式:第一行两个整数n, m.接下来的m行,每行有三个整 ...

  3. 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)

    几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd ...

  4. 最短路径问题的Dijkstra和SPFA算法总结

    Dijkstra算法: 解决带非负权重图的单元最短路径问题.时间复杂度为O(V*V+E) 算法精髓:维持一组节点集合S,从源节点到该集合中的点的最短路径已被找到,算法重复从剩余的节点集V-S中选择最短 ...

  5. SPFA算法学习笔记

    一.理论准备 为了学习网络流,先水一道spfa. SPFA算法是1994年西南交通大学段凡丁提出,只要最短路径存在,SPFA算法必定能求出最小值,SPFA对Bellman-Ford算法优化的关键之处在 ...

  6. 最短路径--SPFA 算法

    适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一 ...

  7. spfa 单源最短路究极算法

    学习博客链接:SPFA 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm.     SPFA算法是西南交通大学段凡丁于1994年发表的.    从名字我 ...

  8. Dijkstra、Bellman_Ford、SPFA、Floyd算法复杂度比较

    参考 有空再更新下用c++, 下面用的Java Dijkstra:适用于权值为非负的图的单源最短路径,用斐波那契堆的复杂度O(E+VlgV) BellmanFord:适用于权值有负值的图的单源最短路径 ...

  9. 单源最短路——SPFA算法(Bellman-Ford算法队列优化)

    spfa的算法思想(动态逼近法):     设立一个先进先出的队列q用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路 ...

随机推荐

  1. Linux基础命令---lsattr

    lsattr 显示指定文件或者目录的属性. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.SUSE.openSUSE.Fedora. 1.语法       lsattr [选项 ...

  2. 好用的在线web页面测试,移动页面测试工具webpagetest使用图文教程

    好用的在线web页面测试,移动页面测试工具webpagetest使用图文教程 http://www.webpagetest.org/ 1.打开主页,输入网址,点击 START TEST 按钮开始测试 ...

  3. 百度地图api通过地址显示地图,白名单

    百度地图api通过地址显示地图,白名单 http://developer.baidu.com/map/jsdemo.htm#i7_1?qq-pf-to=pcqq.c2c---------------- ...

  4. nohup 命令(设置后台进程): appending output to ‘nohup.out’ 问题

    一.Linux 下使用 nohup Unix/Linux下一般比如想让某个程序在后台运行,很多都是使用 & 在程序结尾来让程序自动运行. 比如我们要运行weblogic在后台:./startW ...

  5. Python descriptor 以及 内置property()函数

    Python Descriptor  1, Python Descriptor是这样一个对象 它按照descriptor协议, 有这样的属性之一 def __get__(self, obj, type ...

  6. kubernetes 一些基本的概念

    k8s 原理 kubernetes API server 作为集群的核心,负责集群各功能之间的通信, 集群内的各个功能模块通过API Server将信息存入etcd,当需要获取和操作这些数据的时候 通 ...

  7. 20145101《Java程序设计》第9周学习总结

    20145101<Java程序设计>第9周学习总结 教材学习内容总结 第十六章 整合数据库 数据库本身是个独立运行的应用程序 撰写应用程序是利用通信协议对数据库进行指令交换,以进行数据的增 ...

  8. 20145331魏澍琛《网络对抗》Exp8 Web基础

    20145331魏澍琛<网络对抗>Exp8 Web基础 实践内容: 1.简单的web前端页面(HTML.CSS等) 2.简单的web后台数据处理(PHP) 3.Mysql数据库 4.一个简 ...

  9. 20145337《网络对抗技术》MSF基础应用

    20145337<网络对抗技术>MSF基础应用 一.实验后回答问题 什么是exploit.payload.encode Metasploit这种模块化的设计,大大提高了代码的复用率.exp ...

  10. grep如何结尾匹配

    答:grep "jello$" 如:git branch输出以下内容: yes-jello-good yes-jellos yes-jello 那么使用以下命令只能过滤出一行: $ ...